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advanced contemporary biology by providing a wealth 
of mechanistic information on pulmonary disease at a 
molecular level [5–7], the translation of these findings 
into clinical efficacy has demonstrated mixed success 
[8–10]. With around 80% of drugs found to be effective in 
murine studies ultimately failing clinical trials in humans 
[11, 12], and a success rate of between 50 and 60% in clin-
ical trials of lung cancer therapies originating from ani-
mal studies [13], there is a significant need for additional 
models to improve the correlation between laboratory 
observations and clinical outcomes [10, 11, 14]. Ideally, 
new models will improve upon in vitro techniques by 
including features such as a retention or recreation of the 
lung’s characteristic 3D structure [15–17], varied cellular 
composition [18, 19], interactions between the more than 

Introduction: ex vivo lung models in pursuit of 
improved translational capacity
For as long as pulmonary biology has been studied, 
researchers have attempted to determine the mechanis-
tic causes of lung diseases by replicating characteristics 
of the human lung in a laboratory environment. This 
approach has primarily involved the utilization of genetic 
manipulation or disease models derived from the cul-
ture of cells or animals [1–4]. While these models have 
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Abstract
Ex vivo culture techniques have assisted researchers in narrowing the translational gap between the lab and the 
clinic by allowing the study of biology in human tissues. In pulmonary biology, however, the availability of such 
tissues is a limiting factor in experimental design and constrains the reproducibility and replicability of these 
models as scientifically rigorous complements to in vitro or in vivo methods. Cryopreservation of human lung 
tissue is a strategy to address these limitations by generating cryopreserved biobanks of donors in the ex vivo 
study of pulmonary biology. Modern cryopreservation solutions, incorporating blends of cryoprotective extracellular 
macromolecules and cell-permeant non-toxic small molecules, have enabled the long-term storage of human lung 
tissue, allowing repeated experiments in the same donors and the simultaneous study of the same hypothesis 
across multiple donors, therefore granting the qualities of reproducibility and replicability to ex vivo systems. 
Specific considerations are required to properly maintain fundamental aspects of tissue structure, properties, and 
function throughout the cryopreservation process. The examples of existing cryopreservation systems successfully 
employed to amass cryobanks, and ex vivo culture techniques compatible with cryopreservation, are discussed 
herein, with the goal of indicating the potential of cryopreservation in ex vivo human lung tissue culture and 
highlighting opportunities for cryopreservation to expand the utility of ex vivo human lung culture systems in the 
pursuit of clinically relevant discoveries.
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60 constituent lung cell types [20–22], relevant mechani-
cal forces and stimuli [20, 23, 24], response to perturba-
tion or infection [25, 26], and elements of any chosen 
disease states [27, 28]. Reproducing these attributes with 
as much fidelity as possible to a functional human lung 
is critical in ensuring in vitro results will properly trans-
late to clinical applications [29, 30]. Recent advances have 
seen the development of ex vivo human lung culture 
techniques emerge as a method for satisfying these crite-
ria [25, 31–33].

With the appropriate range of human lung cells 
arranged in a natural 3D architecture [31], ex vivo cul-
ture techniques can be utilized to study traits of human 
pulmonary biology [34, 35], response to drugs [36–38] or 
pathogens specific to humans [18, 39], or investigate the 
early stages of diseases which are either difficult to faith-
fully model in animals [40, 41] or challenging to observe 
in humans [42, 43]. Choice of ex vivo culture method will 
depend on factors such as availability of tissue, resources, 
and research question [44]. Common ex vivo lung culture 
models include human precision-cut lung slices (hPCLS) 
[45], culture of explanted lung tissue fragments [32], 
decellularized lung tissue [34], and growth of organoids 
derived from primary lung cells [29]. Each of these meth-
ods has strengths which suit them to different aspects of 
pulmonary biology, but all have the advantage of utilizing 
primary human cells in three dimensions for the study of 
lung disease [44].

In addition to the wealth of potential methods available 
for ex vivo culture of the human lung, there are numer-
ous reasons ex vivo culture is increasingly employed in 
the study of human pulmonary biology [4, 25, 44]. Gen-
erally, utilization of human specimens is advantageous 
when the study requires a fidelity to in vivo human lung 
biology difficult to accurately replicate in animals, such 
as in viruses specific to human hosts [18, 39, 46, 47]. In 
this scenario, ex vivo explant culture provides a method 
for directly observing host-pathogen interactions in the 
human lung’s component cells [46, 47] within a 3D model 
containing a natural extracellular matrix (ECM) and resi-
dent immune cells [18, 48], a configuration not repro-
ducible in two-dimensional cell culture [49]. With this 
3D nature also comes the potential to mimic the breath-
ing motions found within an active lung [24, 50, 51], 
responsible for critical mechanical stimuli which govern 
the balance of Type and Type II alveolar epithelial cell 
(AECI and AECII) identity [52] and extracellular matrix 
composition [53] in these cellular relationships, and 
essential to the proper modeling of inhaled drug deliv-
ery [54]. In addition, there are various physiological dif-
ferences between animal models of the lung and human 
lung models [10, 55], not all of which are known [56–58]. 
In the case of diseases such as cancer, ex vivo culture of 
organoids or explants can also incorporate autologous 

immune cells, which is impossible in cell lines [59], reca-
pitulate spatially dependent features of tumorigenesis 
[60], or function as a personalized testbed for immuno-
therapies [61]. For these reasons, ex vivo culture methods 
are often suggested as a way to bridge the translational 
gap between the lab and the clinic, improving correlation 
between lab studies and the outcomes of clinical trials 
[62].

Despite the abundance of potential for ex vivo lung cul-
ture to produce new models with improved clinical cor-
relation, there are some limitations to these methods. The 
numerous physical [4, 45, 63], chemical [64], and biologi-
cal [65, 66] discrepancies which naturally arise during the 
culture of human lung cells and tissue fragments outside 
of their native milieu present challenges in the correct 
modeling of in vivo outcomes and mechanisms [44]. By 
necessity, all of these models will also only partially rep-
resent a region of the lung rather than the entire tissue 
or organ, limiting conclusions derived from experiments 
involving them to local effects [66]. Several ex vivo mod-
els do not incorporate mechanisms for waste metabolite 
clearance or circulation, the forces of which provide criti-
cal signaling cues in biological processes such as coagu-
lation [67, 68]. This lack of circulation precludes ex vivo 
models from modeling systemic effects, such as toxicity 
from a drug treatment stemming from reactivity in other 
organs, or whole-body immune system dynamics relat-
ing to immune cell migration in the context of infection, 
as the majority of ex vivo models only represent a single 
organ [45]. Some of these models, such as organoids, are 
also highly sensitive to the composition of culture media 
[69, 70]. The density of tissue cultured ex vivo and the 
necessity of culture media also places many ex vivo lung 
tissue models in what is at best a partially hypoxic envi-
ronment, potentially creating challenges for the analy-
sis of certain hypotheses [71]. The formation of specific 
hypotheses, adapted to the limitations of each model, is 
thus necessary to ensure relevance and correct transla-
tion to clinical outcomes [72].

Ex vivo tissue culture is impossible without access to 
high-quality donor tissue for experiments, especially 
those which require multiple replicates [66]. Obtaining 
human lung tissue requires coordination between clin-
ics and potential donors, and is often time-consuming 
and laborious [73]. Throughout the entire tissue collec-
tion process, care must be taken to document variables 
which could potentially affect the characteristics of the 
recovered sample and subsequent experimental results, 
necessarily including but not limited to patient health 
history and diagnoses associated with the collected tis-
sue, location and condition of the collected tissue from 
the donor’s lungs, media formulation and temperature 
used to transport the tissue, warm ischemia time prior 
to sample collection, method and instrument of tissue 
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dissection, amount of elapsed time prior to dissection, 
dimensions and thickness of dissected tissue, length of 
adaptation period, and tissue viability prior to and fol-
lowing any storage [74]. In addition, cell and tissue com-
position of the lung is functionally distinct across the 
alveoli, bronchioles, and bronchi, so the lobe of origin 
and presence of airways or amount of parenchyma in tis-
sue collected and prepared for ex vivo culture should be 
considered [22, 74, 75]. As the majority of available lung 
donors are likely to belong to a disease population, the 
effects of disease history are also a potential variable in 
the use of their tissue [66], with historical factors such 
as smoking or drug treatment history particularly noted 
for their effects on the tissue received [76, 77]. In certain 
cases, the availability of diseased tissue may be desirable, 
such as in the usage of lung recovered from patients with 
idiopathic pulmonary fibrosis [78, 79] or COPD [80]. 
Apart from these elements, one of the primary limita-
tions of ex vivo lung models is tissue scarcity, which 
constrains the ability of these models to offer the scien-
tifically rigorous elements of reproducibility (the ability 
to obtain the results of multiple experiments within the 
same donor) and replicability (the ability to obtain the 
results of the same experiment in multiple donors) [81].

Cryopreservation to enhance the utility of ex vivo 
lung models
Cryopreservation has the potential to address the scar-
city of high-quality human lung donor tissue for ex vivo 
models and improve their inherent reproducibility and 
replicability weaknesses [82–84]. In addition to stor-
ing tissue available at the researcher’s convenience [85], 
cryobanks allow for the study of multiple donors in par-
allel [84], the opportunity to observe effects potentially 
related to donor heterogeneity [18], and afford a plat-
form of study suited to high-throughput experiments 
[82]. Perhaps most advantageous compared to the use 
of fresh tissue, cryobanks provide the benefit of allowing 
repeat experiments to be performed on the same donor, 
which would otherwise be impossible [18]. These advan-
tages have prompted researchers to amass cryobanks as 
a basis for clinically relevant studies [76]. However, just 
as tissue culture in three dimensions presents numerous 
challenges which do not apply to two-dimensional cell 
culture [31], there are unique considerations for which 
researchers must account in the cryopreservation of 3D 
tissues and organoids. To appropriately address these 
considerations, a thorough understanding of the princi-
ples of cryopreservation [86] is necessary.

For successful cryopreservation, cells must be pro-
tected from injury caused by the numerous phase tran-
sitions implicit in transfer to and from a sub-freezing 
environment [87]. The loss of cell viability at or below 
sub-freezing temperatures during cryostorage occurs 

due to the mechanical disruption induced by ice crystal 
formation [88, 89] inside and outside of cells [90, 91], 
and most cryoprotectants function by preventing the 
destructive effects of ice crystal formation on critical 
cellular structures such as membranes [92, 93]. Addi-
tional damage to freezing or thawing cells is caused by 
the cellular sequestration of salt during the formation 
of extracellular ice crystals, effectively dehydrating cells 
and inducing severe volume reduction [94, 95] prior to 
intracellular aqueous salt crystallization and further del-
eterious effects [96]. The severity of these crystallization 
events is generally dependent on the rate of cooling [97] 
throughout the cryopreservation process, as a solution 
of cooling or heating cells passes through temperature 
points at which phase changes occur and crystallization 
or recrystallization is induced [92, 98]. The optimal rate 
of cooling depends on the type of cryoprotectant used 
[87]. Slow cooling occurs at a rate of -1  °C/min in spe-
cialized containers, whereas vitrification, or fast-cooling, 
occurs at rates exceeding − 20,000  °C/min [99]. Cool-
ing rate must be considered in the context of osmotic 
stresses placed upon cells by the permeating components 
of a cryoprotectant [100], and effective cryoprotectants 
will ease the mechanical stresses induced by these events 
over all the phase changes during freezing and thawing 
in such a way that the plasma membrane remains intact 
and the overall viability of the cryopreserved cells is not 
compromised [88, 92, 101].

The earliest discovered cryopreservation methods 
involved the use of cell-permeant small molecules which 
prevent cell lysis or damage during freeze-thaw cycles, 
such as glycerol [102] or DMSO [103]. Despite the wide-
spread, nearly century-long success of these compounds 
at preserving a wide variety of cells at sub-freezing tem-
peratures [102], these cryopreservatives are poorly suited 
to some applications [97]. DMSO, for instance, poorly 
maintains functional macrophages through a freeze-thaw 
cycle, heavily impacting their ability to generate reac-
tive oxygen species [104], and in some cases inhibits the 
differentiation potential of embryonic stem cells [105]. 
Furthermore, there are numerous reports of broad cyto-
toxic [106], transcriptional [107], and epigenetic [108] 
side-effects associated with the use of DMSO in various 
cell types [109]. Glycerol is less toxic than DMSO over-
all [110], but its high viscosity poses handling challenges 
upon thawing [111] and alters intracellular protein inter-
actions [112]. In cryopreservation of tissues, which are by 
nature comprised of a heterogeneous cellular constitu-
ency, the differential effect of cryoprotectants on viabil-
ity and function also varies depending on cell type, with 
neutrophils and primary fibroblasts notably affected by 
the cryopreservation process, especially when DMSO is 
used [113, 114]. Researchers should therefore accordingly 
account for the uneven alteration of cellular viability and 
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function when assessing the suitability of a cryopreserved 
ex vivo model to meet research objectives [74]. The det-
rimental effects observed in cryoprotectants such as 
DMSO and glycerol have prompted exploration of alter-
nate cryopreservatives for use in research applications 
where these drawbacks would prevent meaningful obser-
vations, potentially with a more consistent preservation 
of all cell types present in tissues [93, 97].

A major area of focus in the development of new cryo-
preservatives is that of biologically compatible macro-
molecules, inspired by their utilization in extremophiles 
to withstand inhospitably cool temperatures [93, 97, 115, 
116]. Nature has served as a guide for the study of sev-
eral of these macromolecular cryoprotectants [117], with 
polyols and sugar polymers some of the first observed 
to help larger organisms such as insects and amphibians 
survive freezing temperatures [118–120]. Types of mac-
romolecular cryoprotectants which have seen laboratory 
success in preserving viable cells at rates similar to that 
of DMSO or glycerol include polysaccharides of trehalose 
[116, 121, 122], sucrose [116], and inulin [123], polymers 
which contain mixed charges to assist in maintenance 
of cellular osmotic integrity (polyampholytes) [97, 124] 
such as proteins [125], or other polymers such as poly-
ethylene glycol [126], polyvinyl alcohol [127], or polyvi-
nylpyrrolidone [128]. In addition to these biologically 
derived compounds, hydrogels of agarose [129, 130], gel-
atin, and alginate [131], materials used in the preparation 
of PCLSs [132], have also been successfully employed as 
cryopreservation agents [133]. Whereas small-molecule 
cryoprotectants act by restricting ice crystal formation 
and regulating osmotic pressure inside and outside of 
cells [98, 100, 134], macromolecular cryopreservatives 
are not cell-permeant and function by controlling the 
flow of solutes and water into and out of cells during the 
freezing process, effectively preventing excess dehydra-
tion associated with extracellular ice formation while still 
allowing enough dehydration to prevent the formation 
of intracellular ice crystals and maintenance of cell size 
[124]. Macromolecules containing mixed charges have 
also been presumed to act in a manner which preserves 
the integrity of the cell membrane or other intracellular 
structures, such as proteins or microtubules, indepen-
dent of any ability to restrict ice crystal formation during 
the freezing and thawing process [97, 135, 136]. Within 
these molecules, charge ratios and the location of charges 
are critical to their ability to maintain viability of cryo-
preserved cells [136, 137]. Hydrogel-based cryoprotec-
tants such as those of agarose function by reducing free 
water and mechanically inhibiting ice crystal formation 
during freezing while also restricting recrystallization of 
ice during thawing [129].

Despite the effectiveness of some biologically derived 
macromolecular cryoprotectants in their host species, 

these compounds do not achieve biological efficacy in 
isolation [97], and have been shown to inadequately 
protect the cell membrane from the formation of sharp 
extracellular ice crystals when used alone as cryoprotec-
tants [138]. This would indicate that any osmotic control 
or membrane alteration provided by these compounds 
is not alone enough to safeguard cellular viability during 
the freezing and thawing process, and biological mecha-
nisms of tissue cryoprotection rely on the presence of 
both large and small molecules [139]. Indeed, this phe-
nomenon can be observed in frogs, where a blend of 
polysaccharides and urea balances the osmotic gradient 
of solutes within cells and prevents cell shrinkage during 
freezing due to the departure of water, enabling survival 
in harsh freezing temperatures [140]. Examples such as 
these, which combine cryoprotective macromolecules 
and small molecules, serve as a guide for how cryopro-
tectants utilized in a laboratory setting could be designed 
to improve control over detrimental osmotic effects 
while mitigating intracellular ice formation and cell dehy-
dration [141]. The properties of these biological examples 
have become a template in the design of synthetic cryo-
protectants, such as zwitterionic small molecules [134], 
which could pair with emerging synthetic macromolecu-
lar compounds to achieve the goal of finding non-toxic 
and biologically inert cryopreservation solutions [87].

Small-molecule and macromolecule cryoprotectants, 
as well as solutions containing combinations of both, 
have been shown to effectively cryopreserve ex vivo lung 
tissue for on-demand culture [18, 77]. As air comprises 
80% of lung tissue, most conventional small-molecule 
cryopreservation solutions such as DMSO easily diffuse 
through the tissue mass and displace harmful ice crystal 
formation, enabling a consistent freezing point propaga-
tion throughout the explanted tissue that is within 10% 
of that found in other solid tissues [142]. The choice of 
appropriate cryopreservation technique and methods 
with which to validate effectiveness of cryopreserva-
tion will vary, however, depending on which ex vivo lung 
model is employed [77]. While cell-permeant cryopreser-
vatives like DMSO are an appropriate media in which to 
preserve hPCLSs, for example, these same cryopreserva-
tives may be incapable of penetrating denser explants at a 
high enough concentration for desired levels of viability 
after exposure to temperatures found in the vapor phase 
of liquid nitrogen [18, 143]. Below, ex vivo lung culture 
techniques suitable for cryopreservation and cryobank 
accumulation are discussed, as well as the appropri-
ate cryopreservation techniques for each and notable 
descriptive or hypothesis-driven studies which have been 
performed using viable lung tissue from cryobanks.
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Ex vivo lung models which can be cryopreserved
Human precision-cut lung slices (hPCLSs)
Perhaps the most-studied model in cryopreservation of 
ex vivo human lung tissue is that of precision-cut lung 
slices, sections of lung tissue measuring around 1  mm 
or less in thickness [144]. PCLSs were first employed in 
animal studies of lung toxicology during the 1980s [145, 
146] before being utilized in studies of human toxicology 
in 1994 [147]. hPCLSs are generally best obtained from a 
fresh lobe of lung which has been inflated with low melt-
ing point agarose or gelatin to prevent the collapse of 
the alveoli, sectioned, and hole-punched, before the hole 
punches are sliced by a vibratome or other precision slic-
ing instrument to produce slices of the desired thickness 
[45]. Several slices can be created from each hole punch, 
and several hole punches can be taken from each sec-
tion, generating a large number of replicates from a given 
region of the lung in the same patient [45, 63]. In addi-
tion to the parameters which should be considered in the 
collection of any tissue for ex vivo culture, characteristics 
of collected hPCLSs, including composition of filling gel, 
gel temperature, tissue sampling method, dimensions of 
tissue selected for slicing, elapsed time prior to slicing, 
resultant PCLS thickness, and slicing instrument, blade, 
and angle should be documented to account for potential 
variability [74]. Each hPCLS represents a near-3D spa-
tial snapshot of the donor lung, complete with any air-
ways, blood vessels, or parenchyma present in the hole 
punch [148], a full complement of cellular heterogeneity 
including structurally critical cells and resident immune 
cells [149, 150], an air-liquid interface [151], the potential 
inclusion of mechanical stimuli associated with breath-
ing [24, 50, 51], and the ability to function as a model 
of physiological phenomena such as airway constriction 
[152–156]. In addition to their usefulness in toxicol-
ogy and drug discovery studies [74, 157], these features 
have made hPCLSs an excellent model for the study of a 
wide variety of lung diseases, including bacterial [25] and 
viral [149] infections, chronic inflammatory disorders 
[4], allergic reactions [158], and cancer [159]. hPCLSs 
can also serve as a platform for comparing murine and 
human response to the same disease [160], and can be 
generated from healthy or diseased donors, meaning that 
disease phenotypes can either be studied directly as they 
existed in situ or induced experimentally for analysis [28, 
161].

Despite the utility of the hPCLS model, there are limi-
tations which must be considered in the course of experi-
mental design [45]. Though the thinness of hPCLSs 
allows for the formation of an air-liquid interface, the 3D 
structural detail of this model is limited compared to that 
of tissue fragments, potentially making that model a bet-
ter choice for studies which require greater spatial detail 
[18, 144]. This lack of dimensionality in hPCLSs also 

allows any factors with which they are treated in culture 
media, including viruses or drugs, to pass above epithelial 
barriers and reach all cells of the slice in a way that would 
not occur physiologically [45]. While it was initially 
believed that culture of PCLS was limited to less than 7 
days without specific culture conditions, such as within 
hydrogels coated in integrin-binding peptide sequences 
to replicate extracellular cues [162], more recent experi-
ments have demonstrated a viable lifespan of around 4 
weeks in these tissues, with media formulation presumed 
to be a determining factor in hPCLS survival in culture 
[85].

There is enormous scope for enhanced reproducibility 
and replicability in the hPCLS model due to the large vol-
ume of slices generated from each donor [45, 63]. Prior 
to cryopreservation, cold storage of PCLS was explored 
as a possible method to maintain these tissues for later 
study [163, 164]. Initial efforts to cryopreserve PCLSs 
occurred in animals, with a 2014 study evaluating cryos-
torage of murine PCLS in 10% DMSO and Dulbecco’s 
modified Eagle medium (DMEM-F12) reporting a nearly 
50% reduction in cellular metabolic activity post-thaw 
despite no significant loss in viability and preservation of 
airway contractility in response to chemical stimulation 
[132]. These findings were corroborated in a 2016 study 
also conducted in animal PCLSs, which further rein-
forced the ability of cryopreserved lung to appropriately 
respond to stimuli by analyzing PCLS response to zinc 
toxicity [157]. Another 2016 study using a similar prepa-
ration technique and the same cryopreservation medium 
in human PCLSs compared fresh and frozen slices from 
three donors, and found frozen tissue to have compara-
ble phagocytic function in stimulated resident immune 
cells, comparable proliferative capacity in stimulated T 
cells, and comparable modulation of airway contractility 
in smooth muscle cells as a response to TAS2R agonists 
[82]. All of these studies utilized a DMSO-based (small-
molecule) cryopreservative. With an appropriate proto-
col for cryopreservation, the high quantity of slices which 
can be generated from a single lobe of human lung thus 
gives this method immense potential for reproducibility 
in a single donor, and an equivalently high potential for 
replicability in a cryobank of multiple donors, overcom-
ing the main shortcoming of ex vivo tissue models (Fig. 1) 
[163].

A 2023 study utilizing a proprietary cryopreservation 
medium provided the most detailed analysis to date on 
cryopreservation in hPCLSs. The authors determined 
there was no difference in viability, protein concentra-
tion, response to lipopolysaccharide (LPS), tissue struc-
ture, or surfactant production between fresh or frozen 
hPCLSs which were successfully cultured in DMEM-F12 
supplemented with 1% insulin-transferrin-selenium for a 
period of 4 weeks [85]. The results of this study indicate 
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that choice of cryopreservative and culture media are 
critical to effective utilization of cryobanks in the hPCLS 
model, suggesting the possibility that the thin nature of 
hPCLSs may allow for successful cryopreservation using 
DMSO, but side-effects associated with altered cell 
metabolism will be present unless a less toxic cryopreser-
vative is used. Proper cryopreservation of hPCLSs thus 
greatly expands their utility as a tool for modeling human 
biology ex vivo by addressing the issue of tissue availabil-
ity, and subsequently the time constraints limiting the 
reproducibility and replicability of this model. The use-
fulness of appropriate cryopreservation techniques to 
this end was confirmed in a 2024 study, where the ability 
of cryopreserved hPCLS to serve as a model of infection 
for viral pathogens such as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) was explored as part 
of an analysis of the hPCLS platform in general [165]. 
Cryopreservation with non-toxic formulations thus holds 
great promise as a method for removing the greatest 
obstacles to the use of hPCLSs in studies of pulmonary 
biology.

Explant tissue fragments
Direct ex vivo culture of explanted lung tissue can be 
accomplished by culturing a whole explanted lung in its 
entirety or by culturing smaller fragments of dissected 
tissue [18, 47, 79]. While ex vivo lung perfusion sys-
tems that maintain a complete human lung for study are 

perhaps the method most faithful to human lung biology, 
this is also the most expensive, least reproducible, and 
least replicable way to culture human lung ex vivo, and 
removes available viable lungs from the transplant pool 
[166, 167]. Culturing dissected fragments of lung tissue 
from the same donor is therefore a preferable method 
to improve reproducibility, similar to the approach used 
in the generation of hPCLSs [168]. To create a 3D ex 
vivo tissue model of the lung parenchyma, the pleura 
and airways are removed from a fresh lobe of lung and 
the alveolar space is dissected into fragments of various 
dimensions which can then receive different experimen-
tal treatments [18, 47, 168, 169]. Ex vivo tissue fragments 
can vary in diameter from 1 mm or less (microexplants) 
[18] to nearly 10 cm [169], and carry the fully functional 
cellular diversity of the alveolar space in an accurate 3D 
structure [170] more relevant to whole lung tissue than 
that found in hPCLS or organoids [18]. Because the 3D 
architecture of the lung is the best preserved of all ex 
vivo models in this method, it is the most useful in stud-
ies where the spatial arrangement of lung cells is criti-
cal, such as those involving viral tropism [47, 170, 171], 
bacterial infections [172, 173], fibrogenesis [42], or cell 
migration [174]. Cryopreserved ex vivo tissue fragments 
can also function as the basis for the generation of decel-
lularized tissue scaffolds [80] or organoids [175], both 
applications which will be discussed in later sections.

Fig. 1 Diagram illustrating the cryopreservation of human precision-cut lung slices for cryobank generation and experimental use. The thin nature of 
precision-cut lung slices enables the mass storage of several slices from the same donor in a multitude of cryoprotectants. Figure illustrations were gener-
ated in BioRender
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There are numerous experimental design consider-
ations necessary when directly culturing ex vivo lung 
tissue fragments. Firstly, even in microexplants, the 3D 
nature of the tissue fragments makes the development of 
an air-liquid interface difficult due to the density of the 
tissue [18]. Reliable long-term (> 7 day) culture methods 
for ex vivo lung tissue fragments also remain elusive, 
though perfusion culture has been suggested as poten-
tially extending the lifespan of these tissue fragments in 
other organs to a length comparable to that of hPCLSs 
[176]. While lung tissue fragments prepared in this man-
ner retain resident innate and adaptive immune cells [18], 
the study of any phenomena involving the recruitment of 
immune cells from other sources to these tissues is chal-
lenging, though the incorporation of a hydrogel matrix as 
a scaffold to support these tissues does make the study 
of cell migration possible [172, 174, 177, 178]. Addition-
ally, the higher concentration of developed ECM in these 
models compared to organoids or hPCLSs can obfuscate 
certain analyses contingent on the detection of molecules 
such as chemokines, some of which like CXCL8 might 
ultimately remain bound to the ECM throughout the cul-
ture period [18].

Similar to hPCLSs, cryopreservation of ex vivo tis-
sue fragments in a cryobank can address the reproduc-
ibility and replicability shortcomings common to ex vivo 
lung culture models (Fig. 2) [31, 179]. Unlike in hPCLSs, 
however, the enhanced density of 3D ex vivo lung tissue 

fragments poses an additional challenge to their cryo-
preservation, as temperature changes throughout these 
fragments are not uniform [180] and small molecules 
are incapable of fully penetrating to the core of larger tis-
sue fragments [18]. While smaller fragments (~ 5 mm3) 
may be adequately cryopreserved using small-molecule 
cryoprotectants such as DMSO [48, 77, 84], viability of 
larger fragments with this method is less favorable and 
the potential for undesired side-effects exists as noted in 
hPCLSs [79]. The successful cryopreservation of larger 
(up to ~ 0.5 cm3) ex vivo lung tissue fragments has been 
reported with the use of macromolecular cryoprotectants 
such as trehalose supplemented with surfactants, per-
fluorocarbons, and protease inhibitors [79], or the com-
mercially available CryoSOFree [18, 174]. A 2014 study 
compared lung tissue fragments cryopreserved with a 
homebrew solution containing small molecule and mac-
romolecular cryoprotectants and fresh lung tissue frag-
ments below 0.5 cm3 from the same donors, and found 
similar protein profiles, cell viability, and tissue structure 
in healthy donors and those with idiopathic pulmonary 
fibrosis [79]. Although the exact mechanism for this 
improved viability remains unclear, based on the princi-
ples by which macromolecular cryoprotectants operate, 
we speculate it is possible that the extracellular control 
of osmotic pressure exerted by these molecules indepen-
dent of their ability to reach the innermost cells of the 
tissue fragments is enough to prevent the formation of 

Fig. 2 Diagram illustrating the sample preparation process for ex vivo lung microexplants. With the appropriate cryoprotectants, tissue microexplants 
can be up to approximately 0.5 cm3 in volume. Figure illustrations were generated in BioRender
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intracellular ice crystals deep within the core of the frag-
ments and retain favorable viability.

Ex vivo culture of cryopreserved lung tissue frag-
ments has been used to study viral infection of human 
lung tissue by SARS-CoV-2 and the migration of lung 
cancer cells along the alveolar surface [18, 174]. A 2019 
study detailed the use of cryopreserved lung tissue frag-
ments as microexplants to analyze the response to SARS-
CoV-2 infection and characterized the cellular makeup 
of the microexplants, the transcription and translation 
of inflammatory mediators in response to drug treat-
ment in the microexplants, and the viral titer of infected 
microexplants, determining that the microexplants 
maintained Type I and Type II alveolar epithelial cells, 
endothelial cells, T cells, and alveolar macrophages and 
monocytes throughout the cryopreservation process 
and demonstrated unimpaired cytokine production in 
response to infection. This information indicated that 
the microexplants were an appropriate model for the 
study of antiviral drugs, and the study further concluded 
that dexamethasone reduced SARS-CoV-2 viral titer in 
infected microexplants without affecting the production 
of inflammatory mediators [18]. A 2024 study analyzing 
cancer cell migration demonstrated that cells adherent 
to previously cryopreserved microexplants could also be 
quantified using intracellular dyes and flow cytometry 
[174].

Decellularized lung
Decellularization of lung lobes or whole lung from cadav-
ers, followed by recellularization through seeding with 
stem cells from the target donor, was originally conceived 
as a method for generating viable lung tissue to be used 
in transplantation with minimal risk of rejection by the 
patient [181]. Currently, this application of this tech-
nique is limited by several factors, including the inability 
to completely remove all cells or cellular debris gener-
ated from the decellularization process without critically 
damaging the ECM [181, 182], damage potentially caused 
to collagens and proteoglycans in the ECM during the 
decellularization process [182, 183], the inability of 
seeded stem cells to properly form long-term functional 
vasculature [184], and the lack of innervation being key 
examples. Despite these shortcomings, the leftover ECM 
in the generation of decellularized lung scaffolds from 
animal or human tissue alike provides an excellent sub-
strate onto which either cell lines or cryopreserved sus-
pensions of primary cells can be seeded [185], a strategy 
not dissimilar to that used in the formation of organoids 
within the ECM-rich framework of Matrigel [186]. Decel-
lularized human lungs are a particularly desirable basis 
for tissue engineering studies due to tissue-specific cues 
in the proteins, glycoproteins, and proteoglycans of the 
human ECM, collectively known as the matrisome [185, 

187, 188]. Gentle decellularization of human lung tissue 
can thus be used as a source of 3D scaffolds [80, 185, 189] 
comprising matrisomes representative of disease states 
in afflictions such as asthma, chronic obstructive pulmo-
nary disease, and idiopathic pulmonary fibrosis [78, 190, 
191].

Decellularization of lungs is typically accomplished by 
perfusion of a detergent designed to separate cells from 
the lung ECM through either the airways, vasculature, 
or both [189, 192]. Depending on the decellularization 
method used, primary cells removed from lung tissue 
can be cryopreserved for later use [175] and seeded onto 
an acellular ECM scaffold [80]. For cryopreservation of 
these primary cells from any organ, small-molecule based 
cryopreservatives suitable for cell lines are appropriate 
and represent a well-covered ground in cryopreservation 
techniques [175, 193]. A central question in the cryo-
preservation of lung tissue expressly for decellularization 
is how the characteristics of the ECM are maintained 
[80]. Cryopreservation of small tissues as a source for 
small decellularized lung scaffolds has been successfully 
performed for laboratory experiments [185], and while 
cryopreservation of decellularized lung scaffolds them-
selves has not been well explored, cryopreserved decel-
lularized pulmonary heart valves have been deployed 
clinically in allografts to avoid a deleterious immune 
response to lingering donor cells [194], suggesting prom-
ise for this approach. Decellularization could thus be 
performed prior to cryopreservation of tissues with the 
goal of cryopreserving scaffolds, or performed on tissues 
which have already been cryopreserved, as applicable to 
research objectives (Fig.  3). Construction of a cryobank 
with either approach would be useful in the utilization of 
tissue engineering techniques to study lung diseases in 
which critical factors may be related to the unique fea-
tures of the matrisome in various donors [80, 185].

A 2023 study employed the snap-freezing and cryo-
preservation of lung tissue from healthy donors as a basis 
for a decellularized lung scaffold, onto which primary 
AECIIs from chronic obstructive pulmonary disease 
(COPD) donors were seeded in the study of ECM pro-
duction and AECII behavior associated with the disease 
[80]. This study utilized a procedure in which peripheral 
lung tissue fragments of approximately 8  mm in diam-
eter were flash-frozen and stored in a homebrew cryo-
protectant containing 30% v/v glycerol, 30% v/v ethylene 
glycol, and 0.1  M sodium phosphate buffer, chosen for 
its ability to preserve the architecture of the lung tissue 
[185]. Post-thaw, the authors decellularized the tissue 
fragments before generating precision-cut lung slices 
of the remaining ECM and seeding them with primary 
AECIIs retrieved from a digestion of lung tissue of COPD 
patients. The authors used this model to successfully cul-
ture adherent AECIIs from healthy and COPD-afflicted 
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donors for one week or more, and determined that 
there were few differences between seeded AECIIs from 
healthy donors and seeded AECIIs of COPD donors, 
implying the importance of the ECM composition in 
the behavior of these cells in COPD. The authors noted 
that the use of an acellular scaffold from COPD donors 
seeded with AECIIs from either healthy or COPD donors 
would provide a clearer picture as to the role of the ECM 
in this disease [80]. It is conceivable that macromolecular 
cryoprotectants appropriate for the preservation of lung 
tissue fragments would also allow cryostorage of lung tis-
sue for the purpose of decellularization, therefore, fur-
ther analysis of the effect of these cryopreservatives on 
the key signaling features of the ECM would prove useful 
in the construction of a cryobank for use in acellular scaf-
fold generation, allowing the contributions of the ECM to 
lung disease to be more easily studied.

Organoids
While originally referring to organ-like structures origi-
nating from tumors [195], the term “organoid” has since 
come to refer to organ-like structures which emerge 
from the 3D culture of stem cells within a gel matrix con-
taining basement membrane components [69, 186, 196, 
197]. The first animal lung organoids were cultured using 
murine fetal pulmonary cells in 2006 [198], and the first 
human lung organoids derived from AECIIs were pro-
duced in 2013 [199], followed by examples originating 

from pluripotent stem cells in 2015 [200]. Organoids are 
utilized in tissue engineering approaches to lung disease 
modeling [201, 202], and in the study of tissue develop-
ment [203–205] and cancer [206, 207]. Lung organoids 
initiate from spheroid clusters of stem cells [200, 208], 
and with the correct signals from culture media or the 
surrounding matrix, can ultimately undergo a budding 
process through which structures resembling fetal tra-
cheal [209], bronchial [210], and alveolar features can 
arise [205], with a thorough complement of intercellular 
interactions and gene expression critical to the emer-
gence of these features available for analysis throughout 
[69, 70, 211]. Human lung organoids in particular can 
be derived from either adult lung stem cells [199], fetal 
lung stem cells [212], or induced pluripotent stem cells 
[200], allowing for the study of tissue-like structures in 
living patients with a minimal requirement for donor tis-
sue [61]. Organoids are the ex vivo lung culture model 
for which there exists the most variety in cryopreserva-
tion strategies, as cryopreservation can be used to store 
the adult stem cells from which organoids originate 
[213], the tissues which are used as the source of these 
stem cells [18, 80], and the organoids themselves [214]. 
The cryopreservation of lung-sourced stem cells derived 
from donor tissue, the cryopreservation of lung organ-
oids themselves, and the cryopreservation of small tis-
sue expressly for the purpose of deriving organoids will 
be the focus of this section. A general discussion of the 

Fig. 3 Diagram illustrating possible experimental protocols used for experiments involving decellularized lung. Tissues cryopreserved prior to decel-
lularization can still be used in experiments as whole tissues or subjected to alternate decellularization protocols, while cryopreserved decellularized 
scaffolds are less adaptable for other protocols but a more rigorous model as all thawed scaffolds from a single donor would have undergone the same 
decellularization process. Figure illustrations were generated in BioRender.
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differentiation techniques and signaling cascades utilized 
to steer stem cells towards lung growth, as well as cryo-
preservation techniques particular to stem cells in gen-
eral, are beyond the scope of this review.

By virtue of being stem cell-derived, organoids are 
highly customizable models of 3D ex vivo culture, with a 
great degree of heterogeneity in size and shape amongst 
cultures originating from the same cluster of cells [29]. 
Unlike the culture methods discussed above, gene edit-
ing with tools such as CRISPR/Cas9 is feasible in lung 
organoids [70] and has been used in studies of cancer [26, 
61, 215], development [216], and idiopathic pulmonary 
fibrosis [217]. The matrix in which lung organoids reside 
can also be configured to accept an air-liquid interface 
[83]. Growth of human organoids requires a minimally 
invasive amount of tissue from donors, obtainable by 
biopsy [218], and can be used as a rapidly available, eas-
ily expandable, patient-matched testbed for therapeutic 
interventions in individualized disease conditions such 
as those found in cancer [61]. Lung cancer is a particu-
larly useful utilization for organoid models of the lung, as 
the development process observed in cancer organoids 
can closely mirror patterns related to oncogenesis [219]. 
The broadly manipulable nature of organoids, how-
ever, can also be a limitation, as faithful reproduction of 
organ structures and disease characteristics requires a 
fine-tuned media and matrix formulation [70], which 
can potentially involve specific concentrations of numer-
ous sensitive signal factors to develop organoids with the 
desired features [69]. Regardless of their origin, organ-
oids are also essentially fetal in nature [205], meaning 
that they are anatomically simplified structures which do 
not possess the full complement of cells found in a devel-
oped organ, and the cells within them do not fully resem-
ble those of a developed adult organ [220]. Organoids are 
thus currently incomplete models of adult tissue mor-
phology, pending the discovery of other factors which 
regulate cellular differentiation [221]. Other models are 
therefore perhaps a better choice in the study of diseases 
which require the accurate simulation of relationships 
within complicated 3D structures such as alveoli.

While it is possible to maintain live biobanks of seri-
ally passaged organoids [70], cryopreservation would 
provide the additional benefits of storage and transport 
to the use of such systems [214, 222] mitigate the effects 
of phenotypic drift [223], and can be incorporated into 
organoid preparation in numerous ways, all of which can 
be employed to form a cryobank [77, 212, 221]. Adult 
or fetal lung cells can be freed from fresh ex vivo tissue 
obtained from various donors and cryopreserved for 
later use in organoid generation [221]. In this instance, 
reproducibility is afforded by all thawed stem cells origi-
nating from the same donor and undergoing organoid 
growth in the presence of identical media factors and 

conditions for each experiment, whereas replicability is 
enabled through the sourcing of stem cells from multiple 
donors. Cryopreserved lung tissues themselves can also 
serve as the source of lung stem cells in this approach, 
which presents the advantage of allowing factors relating 
to organoid development to be tested as variables during 
organoid growth [48, 77, 83]. Alternatively, human lung 
organoids can be generated from fresh adult or fetal lung 
tissue and then themselves collected in a cryobank [212, 
214, 222]. The benefit of this approach is that all banked 
organoids for each donor in this instance emerge from 
the same experimental conditions, providing superior 
reproducibility for studies not related to development, as 
this approach prevents the modification of factors associ-
ated with the growth stage of organoids (Fig. 4).

 Several studies have characterized the effect of cryo-
preservation on tissue used as the basis for organoid 
models [48, 77, 212]. A 2017 paper utilizing lung organ-
oids to study development employed a DMSO-based 
cryoprotectant and slow cooling to freeze human alveolar 
and bronchial organoid lines derived from either human 
fetal stem cells or adult lung tissue, in the identification 
of functional differences in the murine and human tran-
scriptome of the lung distal tip epithelium. The authors 
cultured the organoids in Matrigel prior to dissolution 
of the matrix and eventual cryostorage, and reported 
no critical differences to the expression of SOX genes 
within the organoids or effects on the ability to incorpo-
rate plasmids into cryopreserved organoids post-thaw 
[212]. A 2021 study utilized DMEM supplemented with 
10% DMSO and 20% fetal bovine serum (FBS) to slow-
freeze parenchyma fragments approximately 4  mm in 
diameter prior to thawing and dissociation for organ-
oid generation. The authors noted from single-cell RNA 
sequencing data that there were no significant changes in 
cellular identity, function, transcriptional, or epigenetic 
signatures as a result, but did not derive organoids from 
their thawed tissues [77]. Another 2021 study employ-
ing a similar method, but instead cryopreserving tissue 
fragments in CryoStor CS10, corroborated these find-
ings before successfully forming organoids from cryo-
preserved tissue [48]. A 2023 protocol built upon these 
findings to establish a protocol by which cryopreserved 
tissues could be used as the basis for infection of lung 
organoids with SARS-CoV-2 in air-liquid interface cul-
ture, highlighting the promise of this method in the study 
of viral lung disease [83]. As they can be cryopreserved 
in multiple phases of their development with no appar-
ent deleterious effects on critical genetic factors, organ-
oids thus represent the most flexible ex vivo lung model 
in terms of cryopreservation protocols. Future analysis 
on the role of less-toxic cryoprotectants in the cryobank-
ing of organoids, however, would confirm whether or not 
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DMSO has significant effects on the developmental state 
represented in this model [105]. 

Conclusions and future directions
Cryopreservation presents an answer for many of the 
challenges researchers face in the use of human lung tis-
sue for ex vivo culture [48, 79, 179, 222]. Fresh human 
lung tissue is scarce, its procurement is difficult, and its 
viable window for experimental use in parallel with mul-
tiple donors is severely limited [66, 73]. Cryopreserved 
lung tissue is conveniently available, able to be used in 
various quantities as necessary, and able to be pooled 
with multiple donors [82–84]. These advantages are evi-
dent in the above studies, which have demonstrated the 
use of cryopreserved lung tissue in explant, lung slice, 
acellular, or organoid form to answer crucial questions 
about the biology of pulmonary diseases directly in 
humans. These new approaches to the study of human 
lung biology represent a movement closer to the goal of 
attaining greater fidelity to clinical settings in research 
studies, addressing the commonly cited problems of 
reproducibility and replicability in the use of fresh human 
lung tissue. Ex vivo models will continue to become more 
powerful as cryopreservation protocols evolve, methods 
to prolong the viability and translational relevance of cul-
tured tissue improve, and strategies for synergistic utili-
zation of each model become apparent.

Methods discovered to effectively cryopreserve and 
model lung tissue ex vivo could provide a template for 
the modeling of other organs ex vivo, providing differ-
ences in tissue density, structure, and cellular function 

are appropriately considered as variables affecting the 
cryopreservation process. Tissue characteristics, includ-
ing porosity, cell density, and ECM structure, will affect 
the choice of cryoprotectant and method for adequately 
infusing frozen tissue with cryopreservative [87]. For 
smaller, less dense tissues in which diffusion readily 
occurs, formulations consisting primarily of small-mol-
ecule cryoprotectants will perform appropriately [82], 
while larger or dense sections of tissue will likely require 
a combination of small molecules and macromolecules 
to better control osmosis and ice crystal formation [18, 
79]. In the case of large tissues specifically, where limited 
diffusion is an obstacle to fully protecting frozen tissue, 
new methods, techniques, or equipment designed to 
quickly perfuse fresh tissue with cryoprotectants and just 
as quickly flush it upon thawing may also improve viabil-
ity. For any tissue, but particularly those in which local 
signaling cues are critical, the development of novel, bio-
logically inert molecules capable of exerting the stabiliz-
ing effects necessary for survival of the freezing process 
without inducing unknown off-target effects on cellular 
biology will also alleviate existing concerns related to 
toxicity or undesirable alterations to transcription and 
translation routines after cryopreservation and thawing, 
such as occurs in some cell types with DMSO [104, 105]. 
These improvements in biological fidelity would not only 
apply to laboratory experiments involving tissue stored in 
cryobanks, but also to tissue stored for clinical purposes, 
highlighting effective cryopreservation strategies as a 
critical area for clinically focused research.

Fig. 4 Diagram illustrating the cryopreservation of lung organoids in various stages of growth or preparation. Lung tissue fragments can be used to 
directly derive stem cells or instead cryopreserved and used later as a source of stem cells. These stem cells can either be cryopreserved or used to de-
velop organoids, which can then either be used in experiments or cryopreserved themselves for convenient use at a later date. Figure illustrations were 
generated in BioRender
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Despite the immense promise for human lung cryo-
banks, there is much that is yet to be explored about 
the effects of cryopreservation on human lung tissue. 
While the effects of specific cryoprotectants on viability, 
metabolism, transcription, and translation in lung tissue 
of various sizes has been evaluated [18, 48, 77, 79, 82, 
85, 132, 212], there is much left to be determined about 
the effects of specific cryoprotectant formulations on 
the general biology of ex vivo human lung tissue. Indeed, 
there is no consensus method for stockpiling of lung tis-
sue in cryobanks, and if not DMSO, many laboratories 
currently rely on homemade cryoprotectants designed 
to be specifically compatible with their research objec-
tives. The specific effects of various cryopreservative for-
mulations on certain disease states of the lung, such as 
idiopathic pulmonary fibrosis, are therefore elusive and 
present an obstacle to fully realizing the translational 
potential of ex vivo models. Studies which directly com-
pare fresh tissue to frozen tissue remain the most effec-
tive benchmark in the observation of effects stemming 
from these individualized circumstances, and as long 
as validation against fresh tissue is necessary to confirm 
that cryopreserved tissue is safe to use in the testing of 
each unique hypothesis in the near term, the widespread 
benefit from the aforementioned advantages inherent in 
these ex vivo research methods will be underutilized due 
to lingering dependence on availability of rare fresh tis-
sue. Large-scale -omics studies on tissues cryopreserved 
using the current most-studied cryopreservation meth-
ods might help to eliminate concerns about the effects 
of cryoprotectants on ex vivo lung biology [48], and fur-
ther insight into the effect of cryopreservative formula-
tion on the biology of ex vivo lung tissue is necessary to 
address this potential remaining hurdle in bridging the 
gap between the lab and the clinic.

Though cryopreservation is potentially a universally 
applicable solution to the reproducibility and replicabil-
ity issues facing ex vivo lung models, it is still critical to 
consider the limitations inherent in each model when 
forming hypotheses for study. The aphorism of statisti-
cian George Box, “All models are wrong, some are use-
ful,” [224] is especially relevant to the study of pulmonary 
disease in ex vivo models. However, as confined as these 
models may be in some areas, the direct use of human 
tissue holds the promise that these models will prove 
more useful than existing murine models which precede 
them. Human ex vivo models will never fully replace cell 
culture or animal models, but by complementing them, 
the translational gap can be narrowed and higher suc-
cess rates for therapeutic development can eventually be 
achieved. Improvements in cryopreservation techniques 
and greater understanding of how they affect stored tis-
sues will amplify the rate at which researchers are able 
to utilize ex vivo models in the study of disease, and 

subsequently accelerate our understanding of their short-
comings and fuel the discovery of methods which allow 
us to accommodate them. As the formation of cryobanks 
becomes commonplace, institutions for which the acqui-
sition of human tissue is all but impossible will also be 
able to join the study of human ex vivo models, further 
enlarging the pool of data from which we can refine our 
knowledge of these models. Cryopreservation is there-
fore a fundamental tool in the utilization of ex vivo 
models and will ultimately play a key role in their broad 
adoption throughout the world of pulmonary biology.
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