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Abstract 

Background Pneumonia is a major threat to the health of children, especially those under the age of five. Myco-
plasma  pneumoniae infection is a core cause of pediatric pneumonia, and the incidence of severe mycoplasma 
pneumoniae pneumonia (SMPP) has increased in recent years. Therefore, there is an urgent need to establish an early 
warning model for SMPP to improve the prognosis of pediatric pneumonia.

Methods The study comprised 597 SMPP patients aged between 1 month and 18 years. Clinical data were selected 
through Lasso regression analysis, followed by the application of eight machine learning algorithms to develop early 
warning model. The accuracy of the model was assessed using validation and prospective cohort. To facilitate clinical 
assessment, the study simplified the indicators and constructed visualized simplified model. The clinical applicability 
of the model was evaluated by DCA and CIC curve.

Results After variable selection, eight machine learning models were developed using age, sex and 21 serum 
indicators identified as predictive factors for SMPP. A Light Gradient Boosting Machine (LightGBM) model demon-
strated strong performance, achieving AUC of 0.92 for prospective validation. The SHAP analysis was utilized to screen 
advantageous variables, which contains of serum S100A8/A9, tracheal computed tomography (CT), retinol-binding 
protein(RBP), platelet larger cell ratio(P-LCR) and CD4+CD25+Treg cell counts, for constructing a simplified model 
(SCRPT) to improve clinical applicability. The SCRPT diagnostic model exhibited favorable diagnostic efficacy (AUC > 
0.8). Additionally, the study found that S100A8/A9 outperformed clinical inflammatory markers can also differentiate 
the severity of MPP.

Conclusions The SCRPT model consisting of five dominant variables (S100A8/A9, CT, RBP, PLCR and Treg cell) 
screened based on eight machine learning is expected to be a tool for early diagnosis of SMPP. S100A8/A9 can also be 
used as a biomarker for validity differentiation of SMPP when medical conditions are limited.
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Introduction
Respiratory infections pose a significant challenge to 
global public health [1]. According to World Health 
Organization (WHO),pneumonia causes approximately 
740,000 childhood deaths annually, representing a lead-
ing cause of under-five mortality globally [2]. Among the 
causative agents for childhood pneumonia, Mycoplasma 
Pneumoniae (MP) distinguishes itself with its patho-
genicity and epidemiological data in causing respiratory 
tract infections [3]. Severe mycoplasma pneumoniae 
pneumonia (SMPP) is a serious condition resulting 
from MP infection, characterized by a prolonged disease 
course, complex clinical manifestations, and a propensity 
for developing necrotizing pneumonia, atelectasis, and 
other pulmonary complications. Additionally, it can lead 
to a range of extrapulmonary symptoms, including myo-
cardial and liver injury, which may be life-threatening 
[4]. In recent years, factors such as the wide prevalence 
of MP, its tendency to cause repeated infections [5], the 
increasing rate of drug resistance [6] and co-infections [7, 
8] have led to a rise in the incidence of SMPP [9], which 
seriously threatens the health of children [10–12]. There-
fore, it is necessary to pay attention to the diagnosis and 
treatment of SMPP at an early stage.

 Presently, the diagnosis of SMPP predominantly 
relies on imaging techniques and clinical signs [9]. 
However, the clinical and radiological features of SMPP 
bear a strong resemblance to those of viral - induced 
infections and exhibit heterogeneous characteristics 
[13]. In other words, pneumonia presentations differ 
significantly across pediatric patients with varying [14]. 
This presents a formidable challenge to the prompt and 
precise diagnosis of SMPP in children and the imple-
mentation of appropriate treatment strategies [15]. 
In response to the diverse presentations of pneumo-
nia, comprehensive diagnostic and treatment guide-
lines, such as the CRUB-65 and PSI scores, have been 
established for evaluating the severity of pneumonia 
in adults [16]. However, the assessment of pneumonia 
in children lacks an objective, quantitative, cost-effec-
tive, and convenient diagnostic framework. Traditional 
biomarkers, including white blood cell count (WBC), 
C-reactive protein (CRP), and procalcitonin (PCT), are 
inadequate for accurately distinguishing the severity 
of pulmonary infections in pediatric patients [17, 18]. 
Consequently, recent research has focused on identi-
fying biomarkers specific to pneumonia diagnosis and 
developing evaluation systems tailored to children. 
Studies suggest that several assessment systems can 

enhance risk stratification for pediatric pulmonary dis-
eases [19], such as the Pediatric Respiratory Emergency 
Severity Score (PRESS) [20], the Clinical Pulmonary 
Infection Score (CPIS) [21], and pro-adrenomedullin 
(Pro-ADM) [22]. However, these prediction models 
are not applicable to the assessment of SMPP due to 
their complexity, low sensitivity and lack of specificity 
for SMPP diagnosis. Currently, there is no systematic 
approach for risk classification of pediatric SMPP.

Compared with traditional scoring systems, machine 
learning (ML) models have demonstrated superior per-
formance in predicting various diseases or clinical condi-
tions [23, 24]. ML models are typically constructed based 
on large amounts of data recorded in Electronic Patient 
Record (EPR) systems. Their deep learning capabili-
ties enable them to capture complex nonlinear relation-
ships, and even previously unknown correlations in big 
data, allowing for more in-depth mining of clinical data 
[25]. They also show great potential in clinical settings 
where large amounts of data are collected and integrated 
daily [26]. Recently, Yang and his colleagues developed a 
model using ML algorithms to accurately identify severe 
community-acquired pneumonia (CAP) in adults [27]. In 
addition, ML has been employed to differentiate patho-
gens in pediatric CAP [28]. ML has also been used to 
develop pneumonia-related prognostic models to predict 
mortality risk and complications, including acute respira-
tory distress syndrome (ARDS) [29]. Unfortunately, to 
date, no   ML model has been developed for predicting 
SMPP in children.

The objective of this study is to develop a robust assess-
ment model for the severity of MPP in pediatric patients 
using machine learning algorithms. Such a model aims to 
provide healthcare professionals with a valuable tool to 
design personalized treatment plans for different medi-
cal situations, thus optimizing individualized therapeutic 
strategies.

Methodology
Research design
The research design for this study, as illustrated in Fig-
ure  1, encompasses a four-step process: development, 
internal validation, prospective validation, and interpre-
tation. The initial phase involves the creation of predic-
tive models using a training cohort, which accounts for 
78% of the derivation dataset. Subsequently, the remain-
ing of the derivation dataset serves for internal validation. 
Additionally, an independent dataset is utilized for the 
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prospective validation cohort. Furthermore, the Shapley 
Additive explanations (SHAP) algorithm was employed 
to decipher the importance of individual features within 
the predictive model and to identify non-linear relation-
ships among risk predictors.

Study subjects
This was a prospective, open-label, non-blinded obser-
vational study on 859 hospitalized patients with CAP 
who were admitted to the Wuhan Children’s Hospital, 
Tongji Medical College, Huazhong University of Science 
& Technology from January 2023 to July 2024. Patients 
were included if they fulfilled the following criteria: age 
between 1 month to 18 years, presence of fever and res-
piratory symptoms, and having at least one abnormality 
in the physical examination or chest radiographs accord-
ing to the guidelines for CAP in children (Commission, 
2019) [30]. In accordance with the mycoplasma pneumo-
niae pneumonia laboratory diagnostic consensus [31], we 
further selected 597 children with MPP as the research 
subjects based on the etiological test results. Under the 
direction of clinical physicians, the 597 patients were 
categorized into mild cases (321 patients) and severe 
cases (276 patients) according to the guidelines for MPP 

in pediatrics [32]. Among these children, the derivation 
group comprised a total of 537 participants, while the 
prospective cohort consisted of 60 individuals. Exclusion 
criteria include: individuals presenting with immunode-
ficiency disorders, pulmonary chronicles, cardiovascular 
conditions, chronic glomerulonephritis, rheumatic ail-
ments, nutritional deficiencies, diabetes mellitus, and 
other inherited metabolic disorders. Patients who were 
co-infected with other pathogens and those  previously 
undergone pulmonary surgical interventions were also 
removed. Moreover, children were excluded if their par-
ents or guardians did not provide proxy consent or if data 
were missing. The process of patient selection was shown 
in Supplementary Figure 1.

The derivation cohort and prospective validation 
cohort followed the same inclusion and exclusion cri-
teria. The prospective cohort consisted of patients who 
presented at the respiratory medicine department of 
Wuhan Children’s Hospital, Tongji Medical College, 
Huazhong University of Science & Technology from 
November 2023 to January 2024. These patients were 
initially diagnosed with mycoplasma  pneumoniae  infec-
tion in the last three months. Subsequently, patients were 
subjected to follow-up monitoring at least two weeks. 

Fig. 1 Flow diagram of recruitment and follow-up research in this cohort study
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The clinical characteristics of the 60 patients included in 
the prospective validation cohort are outlined in Supple-
mentary Table S1.

Written informed consent was obtained from all par-
ents. Ethics approval was reviewed and provided by the 
Medical Ethical Committee of the Wuhan Children’s 
Hospital, Huazhong University of Science and Technol-
ogy (2022R048-E01).

Data collection and Laboratory measurements
Demographic and clinical data were collected from elec-
tronic medical record system and laboratory manage-
ment system. The following clinical data were included: 
(1) clinical characteristics: age, gender, clinical symp-
toms and hospitalization duration; (2) representative 
biomarkers with immunomodulatory and inflammatory 
effects: blood routine examination such as white blood 
cell (WBC) count; indicators of inflammation sever-
ity for instance systemic immunoinflammatory index, 
inflammatory factors  and cytokines; biomarkers of host 
immunoregulatory function like complement C3; (3) 
laboratory indicators associated with complications: 
hepatic enzymes, renal function tests, cardiac biomark-
ers, coagulation and electrolyte balance status; (4) imag-
ing results. Fasting venous blood was collected within 24 
h after admission for blood analysis. Chest X-ray or chest 
CT was performed 3 days before or within 2 days after 
admission, and the results were recorded.

Complete blood count, biochemical and immuno-
logical related markers were collected from the children 
recruited upon admission. MP infection was determined 
by tNGS of the patient’s pharyngeal swab/bronchoal-
veolar lavage fluid or detection of mycoplasma   pneu-
moniae  nucleic acid RNA. The laboratory-related 
information in this study, including testing equipment 
and some  items, can be found in the supplementary 
materials.

Statistical analysis
To improve data quality and ensure accuracy, consist-
ency, and availability, we cleaned and standardized the 
collected raw medical data: (1) Data inspection and 
cleaning: After summarizing and sorting the raw data, the 
display formats of values, time, date, and full half-angle 
were integrated for consistency. (2) Data normalization: 
The four elements of specimen type, test item name, test 
result unit, and test reference value were calibrated and 
normalized.  The methods for screening variables from 
the dataset were detailed in the supplementary materials.

All statistical analyses in this study were conducted 
using R studio (version 4.3.2), GraphPad Prism (version 

8.0), and Python (version 3.7). Baseline data analysis of 
patients began with normality tests on the quantitative 
data. Normally categorical variables are presented as 
counts(n, %), while continuous variables are expressed 
as medians and interquartile ranges (P25, P75). Com-
parative analyses of the distribution differences in clini-
cal metrics between cohorts were performed using the 
Mann - Whitney U test and chi - square test. ROC curve 
analysis evaluated the diagnostic performance, using the 
optimal Youden index method to determine the cut-off 
values for each indicator. DeLong test was used for the 
statistical evaluation of the area under the curve (AUC). 
Visualizations such as histograms, scatter plots, and 
receiver operating characteristic (ROC) curves were 
created with GraphPad Prism, while probability density 
plots, heatmaps, calibration plots, decision curve analysis 
(DCA), and clinical impact curve (CIC) diagrams were 
generated using R packages like"ggplot2"and"Complex 
Heatmap". SHAP visualizations were built with Python. 
Variable selection in the model was assisted by Lasso 
(Least absolute shrinkage and selection operator) regres-
sion. A two-tailed P-value of less than 0.05 was consid-
ered statistically significant.

Model derivation and validation
The ML models were developed using Python and R stu-
dio. During the model development process, multiple 
algorithms were used for model construction, including 
Light Gradient Boosting Machine (LightGBM), Extreme 
Gradient Boosting (Xgboost), Logistic Regression (Logis-
tic), Random Forest (RF), K-Nearest Neighbors (KNN), 
Support Vector Machine (SVM), Decision Tree (DT) 
and Naïve Bayes(NB). The comparative effectiveness of 
these models was measured by the Kappa statistic and 
F1 score to identify the best model. After identifying the 
optimal model, its performance on the validation data-
set was assessed in terms of sensitivity and specificity. 
The efficacy of the eight machine learning algorithms 
was assessed across the internal validation and prospec-
tive validation cohorts. Then, the SHAP framework was 
applied to interpret the model and quantify the contribu-
tion of individual predictors. Predictors with significant 
contributions were selected to build a multivariate logis-
tic regression model, which was subsequently evaluated 
for performance effectiveness. Additionally, the CIC and 
DCA curves were employed to assess the performance of 
various models, while Net Reclassification Improvement 
(NRI) and Integrated Discrimination Improvement (IDI) 
metrics are utilized to evaluate the impact of incorporat-
ing specific metrics on model efficacy.
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Results
Demographic characteristics and clinical information
This study divided the derivation cohort (comprising 537 
cases) into a training set (419 cases) and a validation set 
(118 cases). Compared the different sets with the pro-
spective cohort, the results are presented no significant 
difference in gender and ages among the groups (P > 
0.05) (Supplementary Tables S2). There was also no noted 
variation between the sets on some clinical indicators 
(Supplementary Table S1).

Variable selection
In order to discern the differential markers among pedi-
atric patients with varying severities of MPP, the deriva-
tion cohort was stratified into mild and severe categories 
based on the established criteria (31) and assessed the 
expressional disparities among 70 clinical indicators col-
lected. As shown in Table 1, 35 of the 70 analyzed indi-
cators showed significant differences between mild MPP 
and SMPP. Clinically, severe cases exhibited distinct dif-
ferences in fever and cough duration before hospital 
admission compared to mild cases. Peak body tempera-
tures during the disease course also differed significantly 
between  mild and severe MPP. For  pulmonary imag-
ing  assessment,  two radiologists collaboratively evalu-
ated and scored the imaging findings. The results showed 
that the severe pulmonary imaging findings were mostly 
unilateral or bilateral lobar consolidation shadows, which 
were significantly different from the mild pulmonary 
lesions. Upon further analysis of the serological mark-
ers in the two groups of pediatric patients, significant 
differences were observed in serological markers related 
to immune and inflammatory regulation. These markers 
encompassed platelet count (PLT), mean platelet volume 
(MPV), platelet large cell ratio (P - LCR), neutrophil - 
to - lymphocyte ratio (NLR), C-reactive protein (CRP), 
procalcitonin, ferritin, calprotectin, interleukin - 6 (IL - 
6), interleukin - 10 (IL - 10), interferon - γ (IFN - γ), the 
count of  CD8+ T cells,  CD16+CD56+ cell (natural killer 
(NK) cells) and  CD4+CD25+Treg cell count. Meanwhile, 
to investigate whether mycoplasma infection causes 
damage to the functions of other organs, the enzymatic 
indices related to liver and kidney damage were col-
lected, and their expression differences in different infec-
tion severities were compared. The results showed that 
serum  alkaline phosphatase (ALP), prealbumin (PA), 
total protein (TP), albumin (ALB), uric acid (UA), cys-
tatin C (Cys-C), retinol-binding protein (RBP), sodium 
 (Na+), calcium  (Ca2+), international normalized ratio of 
prothrombin time (PT-INR), D-dimer, activated partial 
thromboplastin time (APTT) and antithrombin (AT) in 

the severe group were significantly  different from those 
in the mild group (P < 0.05).

Lasso regression analysis was applied to the 35 pre-
selected variables for confounding adjustment. Combin-
ing the changes in the lambda value and the number of 
included variables under ten-fold cross-validation,  the 
number of variables varies between 8 and 27 under 
the two lambda value selection modes (min/1 se) was 
shown in Figure 2A. Further comparisons of the classifi-
cation performance within the training set revealed that 
there was no significant difference in the discriminative 
effect of the included variables regardless of whether the 
lambda value was set to min or 1 se (P > 0.05). Since a 
larger number of variables are included under the min 
value, which can increase the accuracy of the model as 
much as possible, as shown in Table  2, the results indi-
cate that a total of 23 variables were incorporated into 
the model construction. These variables were: gender, 
age, S100 A8/A9, CT, X-ray, fever duration, cough dura-
tion, peak body  temperature,  PCTper, P-LCR, TP, PA, 
UA, Cys-C, RBP,  Ca2+, D-dimer, APTT, ferritin, hs-CRP, 
 CD3+CD8+T cell counts,  CD4+CD25+ Treg counts, NLR. 
To ensure the stability of the model and to eliminate the 
impact of inter-variable correlations on the results, a cor-
relation analysis was conducted on 16 continuous vari-
ables (Figure 2B).

Construction of the SMPP risk prediction model
Using machine learning algorithms to construct SMPP Risk 
Prediction Model
In the model training, a positive class represented the pres-
ence of SMPP, while a negative was mild MPP. After variable 
screening, the input data for the training model included 
23 indicators selected by Lasso regression. Utilizing these 
23 indicators, we developed eight different machine learn-
ing models, including LightGBM, Xgboost, Logistic model, 
RF, KNN, SVM, DT and NB model (Table  3). The study 
results indicated that compared to other machine learn-
ing algorithms, the LightGBM model demonstrated higher 
AUC values in both the training set and the internal vali-
dation set (Figure 3A, B). Further examination of the data 
in the internal validation cohort found that the accuracies 
of LightGBM, logistic, RF, Xgboost and SVM were all rela-
tively perfect (AUC > 0.90) (Table 4, Figure 3B). The predic-
tive value of each model was assessed using the F1 Score 
and Kappa statistic. By integrating the F1 scores and Kappa 
values of the various machine learning models in both the 
training and validation sets, as well as the difference and 
decrease in values, combined with the interpretability of 
the model (sensitivity and precision), LightGBM was com-
prehensively evaluated as the best performer, followed by 
random forest (Figure 3C).
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Table 1 The clinical and laboratory characteristics of the mild and severe group of children with MPP

Mild group Severe group P-value
(n = 279) (n = 258)

Ages (months) 78 (52.00, 100) 85 (57.00, 102.00) 0.54

Sex, male, n (%) 151 (54.18) 122 (47.29) 0.09

Paroxysm duration before admission (days) 7 (5, 10) 7 (5, 9) 0.22

Fever duration before admission (days) 7 (4, 10) 8 (5, 11) 0.02

Cough duration before admission (days) 10 (6, 13) 12 (9, 15) < 0.01

Peak body temperature, n (%) < 0.01

normal (< 37.2 ℃) 44 (15.77) 9 (3.49)

low-grade fever (37.3 ~ 38 ℃) 23 (7.89) 13 (5.04)

moderate fever (38.1 ~ 39 ℃) 103 (36.92) 82 (31.78)

high fever (> 39 ℃) 109 (39.42) 154 (59.69)

Pulmonary radiograph finding, n (%) < 0.01

No infiltrate 18 (6.45) 12 (4.65)

Diffuse or patch infiltrate 191 (68.46) 105 (40.70)

Localized infiltrate 70 (25.09) 141 (54.65)

Tracheal computed tomography, n (%) < 0.01

non or less (< 2/3) consolidation in a single lobe 239 (85.66) 63 (24.42)

≥2/3 consolidation in a single lobe 31 (11.11) 138 (53.49)

hyperdense solid lesions in two or more lobes 6 (2.15) 39 (15.12)

diffuse diffusion in a single lung 3 (1.08) 18 (6.97)

White blood cell count(WBC)  (109/L) 7.34 (5.95, 9.46) 7.34 (5.93, 9.27) 1.00

Lymphocyte count(LYM)  (109/L) 2.05 (1.6, 2.88) 1.94 (1.49, 2.69) 0.11

Neutrophil count(NEU)  (109/L) 4.41 (3.33, 5.87) 4.51 (3.36, 5.89) 0.37

Monocyte count(MONO)  (109/L) 0.52 (0.39, 0.7) 0.51 (0.38, 0.73) 0.93

Eosinophil count(EOS)  (109/L) 0.09 (0.03, 0.21) 0.08 (0.02, 0.22) 0.07

Basophil count(BAS)  (109/L) 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.38

Red blood cell count (RBC)  (1012/L) 4.51 (4.19, 4.88) 4.45 (4.15, 4.74) 0.12

Hemoglobin(HGB) (g/L) 123 (117, 132) 122 (114.25, 131) 0.17

Hematocrit (HCT) (%) 38 (35, 40.7) 37.6 (34.5, 40.48) 0.29

Platelet (PLT)  (109/L) 288 (231, 366) 270.5 (218.25, 345.5) 0.02

Mean platelet volume(MPV) (fL) 9.1 (8.5, 9.8) 9.5 (8.8, 10.38) < 0.01

Thrombocytocrit(PCT) (%) 0.27 (0.21, 0.35) 0.25 (0.21, 0.32) 0.48

Platelet larger cell ratio(P-LCR) (%) 18.4 (15.28, 23.65) 23.5 (17.4, 28.1) < 0.01

Systemic immune inflammation index(SII) 608.57 (389.58, 884.00) 605.26 (388.27, 933.87) 0.70

Neutrophil-to-lymphocyte ratio(NLR) 2.04 (1.44, 2.91) 2.36 (1.49, 3.43) 0.03

Platelet to lymphpcyte ratio(PLR) 137.43 (103.67, 178.46) 140.00 (100.50, 186.40) 0.77

Pan-immune-inflammation value(PIV) 299.72 (191.69, 487.90) 309.26 (166.10, 574.45) 0.28

C-reactive protein(hs-CRP) (mg/L) 7.81 (3.59, 18) 16.2 (6.41, 37.85) < 0.01

Procalcitonin(PCT) (ng/mL) 0.09 (0.06, 0.16) 0.12 (0.08, 0.24) < 0.01

Ferritin (ng/ml) 96.22 (71.98, 137.06) 111.55 (77.45, 178.77) < 0.01

Serum amyloid A(SAA) (mg/L) 85.37 (26.25, 222.42) 123.82 (36.1, 202.94) 0.83

S100 A8/A9 (ng/mL) 0.25 (0.18, 0.36) 0.72 (0.45, 0.98) < 0.01

Immunoglobulin A(IgA) (g/L) 1.3 (0.94, 1.77) 1.31 (0.97, 1.77) 0.75

Immunoglobulin M(IgM) (g/L) 1.23 (0.96, 1.58) 1.23 (0.92, 1.64) 0.75

Complement 3(C3) (g/L) 1.26 (1.12, 1.42) 1.25 (1.1, 1.38) 0.14

Complement 4(C4) (g/L) 0.34 (0.27, 0.4) 0.33 (0.26, 0.39) 0.29

Immunoglobulin E(IgE) (IU/mL) 91.1 (37.25, 228.5) 98.3 (33.1, 255) 0.47

Interleukin 4(IL-4) (pg/mL) 2.26 (1.24, 3.73) 2.08 (1.24, 3.88) 0.99

Interleukin 6(IL-6) (pg/mL) 9.73 (4.63, 19.19) 17.16 (9.08, 37.37) < 0.01
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Contribution degree of indicators
The contribution degrees of the corresponding indicators 
in the LightGBM and RF models were displayed using 
the SHAP value summary visualization diagrams, as 
shown in Figure 3D and E. The top 8 indicators primar-
ily included S100 A8/A9, RBP, CT, hs-CRP, PLCR, APTT, 
NLR, and  CD4+CD25+ Treg, with S100 A8/A9 having 
a significantly higher contribution than the other seven 
indicators (Supplementary Figure 2A, B). Additionally, by 
comparing the degrees of dispersion of the indicators in 
the two models, it could be found that the distribution of 
each indicator in the LightGBM was more concentrated 

than that in the RF model, indicating that the influence of 
this feature in different samples was relatively stable. To 
further demonstrate the specific contribution values of 
each feature to predicting mild and severe cases, SHAP 
force plots were drawn to intuitively analyze the detailed 
features of individual samples (Supplementary Figure 2C, 
D). Meanwhile, the study analyzed the diagnostic perfor-
mance of the LightGBM model in a prospective valida-
tion set. The results indicated that the LightGBM model, 
derived from both the training and internal validation 
sets, showed a decrease in sensitivity and specificity 
when its performance was assessed in the prospective 

Table 1 (continued)

Mild group Severe group P-value
(n = 279) (n = 258)

Interleukin 10(IL-10) (pg/mL) 3.41 (2.5, 4.49) 4.76 (2.53, 8.81) 0.03

Tumor necrosis factor-α(TNF-α) (pg/mL) 2.2 (1.28, 4.09) 2.26 (1.1, 4.25) 0.76

Interferon-γ(IFN-γ) (pg/mL) 4.86 (2.34, 6.75) 6.17 (3.56, 14.22) < 0.01

CD3+CD4+T cell (/μL) 718 (511, 1002) 629 (417.75, 846.25) < 0.01

CD3+CD8+T cell (/μL) 480 (345.75, 743.5) 445.5 (309, 645.25) 0.03

CD3+CD4+CD8+T cell (/μL) 5 (2, 9.5) 4 (2, 7) 0.09

CD16+CD56+ cell (/μL) 189 (129, 336) 160.5 (93.75, 259.25) < 0.01

CD19+B cell (/μL) 346 (212.75, 569.25) 303.5 (214.75, 506.5) 0.13

CD4+CD25+Treg cell (/μL) 100.5 (62.75, 150.25) 81 (59.5, 117.5) 0.02

Treg/CD4+T (%) 12.8 (10.4, 15.45) 13.2 (10.43, 16.8) 0.41

Alanine aminotransferase(ALT) (U/L) 11 (8, 14) 11 (9, 15) 0.19

Gamma-glutamyltransferase(γ-GT) (U/L) 11 (9, 13.25) 11 (10, 14) 0.31

Aspartate transaminase(AST) (U/L) 26 (22, 32) 28 (22, 35) 0.05

Alkaline phosphatase(ALP) (U/L) 162 (133, 192.25) 150 (125, 179) < 0.01

Prealbumin(PA) (mg/L) 104.4 (83.35, 138) 99 (77.8, 122.2) < 0.01

Total Protein(TP) (g/L) 67.75 (64.7, 70.7) 66.8 (63.6, 69.1) < 0.01

Albumin(ALB) (g/L) 42.55 (41.2, 44.53) 41.7 (39.7, 43.5) < 0.01

Creatine Kinase(CK) (U/L) 82 (60, 129) 86 (61, 138) 0.68

Creatine kinase isoenzymes(CK-MB) (U/L) 22 (18, 28) 21 (16, 26) 0.05

Creatinine(CR) (μmol/L) 33 (28.4, 40.33) 33.5 (26.45, 41.35) 0.86

Uric acid(UA) (μmol/L) 220.5 (183.75, 270.75) 212 (163.6, 262.7) 0.02

Cystatin C(Cys-C) (mg/L) 0.8 (0.73, 0.91) 0.84 (0.76, 0.98) < 0.01

Retinol-Binding Protein(RBP) (μg/mL) 16.25 (2.38, 19.9) 13.2 (2.24, 18.3) 0.02

Sodium(Na+) (mmol/L) 138.1 (136.3, 139.88) 137.4 (135.7, 139) < 0.01

Potassium(K+) (mmol/L) 4.08 (3.78, 4.41) 4.0 (3.68, 4.38) 0.08

Chloride(Cl-) (mmol/L) 103.4 (101.3, 105.3) 102.9 (100.7, 104.83) 0.09

Calcium(Ca2+) (mmol/L) 2.32 (2.24, 2.43) 2.29 (2.18, 2.42) < 0.01

International normalized ratio of prothrombin time(PT-INR) 1.05 (1, 1.1) 1.07 (1.01, 1.12) 0.03

D-Dimer (mg/L FEU) 0.38 (0.26, 0.54) 0.48 (0.31, 0.79) < 0.01

Antithrombin(AT) 97.9 (92.4, 106.3) 95.5 (88.8, 104.1) < 0.01

Fibrinogen(FIB) (g/L) 3.85 (3.45, 4.26) 4 (3.5, 4.49) 0.08

Activated partial thromboplastin time(APTT) (s) 29.8 (26.6, 34.1) 31.5 (27.1, 36.5) 0.01

Thrombin time(TT) (s) 16.4 (15.8, 17.1) 16.2 (15.5, 16.8) 0.01

MPP: mycoplasma pneumoniae pneumonia; Mild: Mild mycoplasma pneumoniae pneumonia; Severe: Severe mycoplasma pneumoniae pneumonia

Data comparison used Student’s test, Mann-Whitney U-test, χ 2 Chi-squared test. P < 0.05 was considered statistically significant.
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validation cohort. However, the positive predictive value 
approached 85%, the negative predictive value was 
greater than 95%, and the Kappa value was greater than 
0.8, suggesting that the model contains perfect practical 
value (Table 5).

Simple model construction
To make clinical assessment more convenient, the study 
simplified the indicators included in the model. By utiliz-
ing a Venn diagram to consolidate the top 20 indicators 
with high contribution scores from both the LightGBM 
and RF algorithms (Supplementary Figure  2 A,B), the 
study identified that 18 of these indicators overlapped 
(Figure 3F).

The importance of these 18 overlapping indicators was 
further ranked. According to the screening criterion of 
mean (SHAP value) > 0.025, the top 5 indicators in terms 
of importance ranking were selected, which were S100 
A8/A9, RBP, CT, PLCR and Treg cell count respectively. 
Logistic regression analysis was used next to fit these 5 
indicators to construct a simple model, and named this 
model the SCRPT model. The diagnostic values of this 
model in the training set, internal validation set and pro-
spective validation set were analyzed respectively. As 
shown in Table 6, the SCRPT model demonstrated supe-
rior diagnostic performance, with AUC values all exceed-
ing 80%.in all cases.

Consequently, we created an online computing plat-
form based on the optimal SCRPT model (https:// www. 
evide ncio. com/ models/ show/ 10603?v= 2.0). This plat-
form allows doctors and patients to perform calculations 
online.

Association between the serum S100 A8/A9 levels 
in children with SMPP
During the model construction process, the contribu-
tion of indicators was analyzed, revealing that S100 A8/
A9 outperforms other indicators in guiding the assess-
ment of severity in both machine learning algorithms 
and the construction of the simplified model. Conse-
quently, further analysis was carried out on this indica-
tor and the results were shown in Figure  4. In the 597 
samples composed of the source cohort and the prospec-
tive cohort, serum S100 A8/A9 demonstrated no signifi-
cant differences in its distribution across age and gender 
(Figure  4A). The study compared the expression levels 
of serum S100 A8/A9 in patients with mild and severe 
MPP, as shown in Figure 4B, the level in severe patients 
was significantly higher than that in mild patients. More 
importantly, as an inflammatory indicator, the study 
explored the differences in clinical diagnostic efficacy 
between S100 A8/A9 and commonly used clinical inflam-
matory indicators. As shown in Figure 4C, the diagnostic 
efficacy of S100 A8/A9 (AUC = 0.889) was superior to 
that of CRP (AUC = 0.746), Ferritin (AUC = 0.634) and 
PCT (AUC = 0.618). For the purpose of investigating the 
diagnostic capability of S100 A8/A9 as a single indicator 
for SMPP, the study further adopted the DeLong analy-
sis to evaluate the prediction effects of the SCRPT model 
and the S100 A8/A9 prediction model in three datasets. 
The results presented in Supplementary Table 3 indicated 
that, compared with the SCRPT model, the efficacy of 
the S100 A8/A9 model was significantly lower in both the 
training set and the test set. However, there was no sta-
tistically significant difference between the two models 

Fig. 2 Variable screening and continuous variable correlation analysis. A. The Lasso regression combined with ten-fold cross-validation 
under lambda taking and the number of variables included varies between 8 and 27 under both lambda taking modes (min/1 se); B. Correlations 
among 16 continuous variables. Correlations were analyzed using the Spearman correlation analysis. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001

https://www.evidencio.com/models/show/10603?v=2.0
https://www.evidencio.com/models/show/10603?v=2.0
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in the prospective validation set (P > 0.05). Meanwhile, 
in the DCA curve, the net benefit (true positive rate - 
false positive rate) of the single S100 A8/A9 model was 
above 0.1 (Figure 5A), suggesting that S100 A8/A9 alone 
has good clinical application value for predicting disease 
severity.

Discussion
The proportion of severe Mycoplasma pneumoniae 
pneumonia (MPP) has increased after the pandemic, 
imposing a heavier social burden [33]. Based on eight 
machine learning methods, this study identified five indi-
cators—S100 A8/A9, CT, RBP, PLCR, and Treg cell—that 
are significantly associated with SMPP and constructed 
a simplified model. It exhibited favorable diagnostic effi-
cacy  in the training set, validation set, and prospective 
cohort (AUC > 80%). Additionally, we explored the ability 
of S100 A8/A9 to differentiate the severity of MPP and 
assessed its diagnostic efficacy, and the results showed 
that it outperformed commonly used clinical sever-
ity indicators such as CRP and PCT in the diagnosis of 
severe MPP. This provides multiple options for the early 
and accurate diagnosis of SMPP.

SMPP is a life-threatening pulmonary infectious disor-
der that not only compromises pulmonary parenchymal 
function but also frequently induces extrapulmonary 
manifestations, such as cutaneous rashes [34, 35]. SMPP 
precipitates immune dysregulation, significantly increas-
ing susceptibility to polymicrobial infections [8], thereby 
complicating treatment regimens [36]. Consequently, 
early detection of SMPP is crucial. In clinical practice, 
physicians often rely on changes in physical signs to 
assess the condition. While this approach is practical, it 
is subjective and lacks systematic quantitative standards 
[37]. Our review of existing clinical literature reveals a 
deficiency in judgment models for pediatric SMPP. The 
present study  addresses this gap. Compared to previ-
ous studies, our model demonstrates superior diagnos-
tic performance  (AUC = 0.889) over  the adult-modified 
pediatric pneumonia score (CPIS) [38], and its sensitivity 
surpasses that of the PRESS score, which is based on the 
oxygen saturation index [20]. Furthermore, our model is 
specifically designed for pediatric MPP and demonstrates 
higher specificity than recent ML-based pneumonia 
assessment models [27, 28].

In recent years, numerous studies have focused on 
elucidating the pathogenesis of MPP to identify novel 
biomarkers. Elevated levels of Pro-adrenomedullin 
(Pro-ADM) [22] and interleukin-18 (IL-18) [39] have 
been observed in the body fluids of patients with MPP. 
Compared to traditional inflammatory markers, these 
indicators have demonstrated significant advancements 
in enhancing diagnostic specificity. However, chal-
lenges such as the specialized nature of specimen col-
lection, the lack of specificity for pediatric populations, 
and the limited diagnostic efficacy of single indicators 
have prompted the exploration of conventional and 
readily accessible biomarkers. This study aims to iden-
tify clinically relevant laboratory indicators for SMPP 
in pediatric patients. Previous research has shown 

Table 2 Variable screening in the lasso regression analysis of 
variables to distinguish SMPP

Value in each column is the coefficient value of variable under the two modes 
of Lasso regression (min = lambda min, 1 se = lambda 1 se). Symbol “.” represent 
0 which means such variable was unimportant thus its coefficients was 
compressed to zero by lasso regression

Variable Min lse

Gender 0.064

age −0.203

S100 A8/A9 5.821 2.801

Tracheal computed tomography 1.273 1.03

Pulmonary radiograph finding 0.289 0.154

Fever duration before admission 0.059 .

Cough duration before admission 0.054 .

Peak body temperature 0.337 0.079

PLT . .

PCTper 0.236

MPV . .

PLCR 0.146 0.082

TP −0.018 .

ALB . .

ALP . .

PA 0.003 .

UA −0.002 .

CysC −0.027 .

RBP −0.26 −0.053

Na+ . .

Ca2+ −0.018 .

PT-INR . .

D-dimer 0.049 .

AT . .

APTT 0.057 0.007

TT . .

PCT . .

ferritin 0.002 .

hs-CRP 0.003 0.002

IL-6 . .

IL-10 . .

IFN-r . .

CD3+CD4+T cell . .

CD3+CD8+T cell 0 .

CD16+CD56+ cell . .

CD4+CD25+Treg cell −0.002 .

NLR −0.073 .
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Table 3 Diagnostic performance of each model for SMPP in training cohort

AUC: receiver operating characteristic curve

Model AUC Precision F1 score Sensitivity Specificity Negative Kappa
prediction rate

LightGBM 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 1

XGboost 92.62% 92.52% 92.74% 92.96% 92.27% 92.72% 0.8523

Logistic 94.76% 97.99% 94.66% 91.55% 98.07% 91.86% 0.8953

RandomForest 94.76% 95.26% 94.81% 94.37% 95.17% 94.26% 0.8952

KNN 82.38% 88.83% 81.12% 74.65% 90.34% 77.59% 0.6484

SVM 96.67% 97.61% 96.68% 95.77% 97.58% 95.73% 0.9333

Decision Tree 94.05% 92.73% 94.23% 95.77% 92.27% 95.50% 0.8809

Naïve Bayes 81.67% 91.46% 79.58% 70.42% 93.24% 75.39% 0.6345

Fig. 3 Performance comparison of eight models on the cohorts. A. ROC curves for each model in the training cohort; B. ROC curves for each 
model in the validation set; C. The changes in Kappa values of eight machine learning algorithms in the training set and the validation set; D. 
LightGBM based on the SHAP algorithm; E. Randomforest model based on the SHAP algorithm; F. Venn diagram of cross-variables among multiple 
algorithms

Table 4 Diagnostic performance of each model for SMPP in internal validation cohort

AUC: receiver operating characteristic curve

Model AUC Precision F1 score Sensitivity Specificity Negative Kappa
prediction rate

LightGBM 95.00% 91.67% 93.62% 95.65% 94.59% 97.22% 0.8951

XGboost 92.50% 89.36% 90.32% 91.30% 93.24% 94.52% 0.842

Logistic 88.33% 84.78% 84.78% 84.78% 90.54% 90.54% 0.7532

RandomForest 95.00% 95.45% 93.33% 91.30% 97.30% 94.74% 0.8934

KNN 81.67% 78.57% 75.00% 71.74% 87.84% 83.33% 0.6057

SVM 88.33% 83.33% 85.11% 86.96% 89.19% 91.67% 0.7552

Decision Tree 92.50% 87.76% 90.53% 93.48% 91.89% 95.77% 0.8433

Naïve Bayes 76.67% 73.68% 66.67% 60.87% 86.49% 78.05% 0.4897
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Table 5 Diagnostic performance of LightGBM model for SMPP in Prospective validation cohort

AUC: Receiver operating characteristic curve

Model AUC Precision F1 score Sensitivity Specificity Negative Kappa
prediction rate

LightGBM 91.67% 84.21% 86.49% 88.89% 92.86% 95.12% 0.8047

Table 6 Diagnostic efficacy of SCRPT model in different sets

AUC: Receiver operating characteristic curve

Cohort Sensitivity Specificity Kappa Yoden Accuracy Auc

Training cohort 84.04% 93.72% 0.777 77.76% 67.21% 88.88%

Validation cohort 82.61% 93.24% 0.768 75.85% 89.17% 87.93%

Prospective cohort 72.22% 92.86% 0.672 65.08% 86.67% 82.54%

Fig. 4 Diagnostic performance of S100 A8/A9 in SMPP. A. Distribution of S100 A8/A9 by age and gender; B. Differences in the distribution 
of serum S100 A8/A9 in mild and severe MPP; C. Diagnostic efficacy analysis of commonly used clinical inflammatory indicators in the diagnosis 
of SMPP.****P < 0.0001

Fig. 5 Clinical rationality analysis of the severe MPP prediction model. A. Clinical decision analysis diagram of multiple models; B Clinical impact 
curve of the SCRPT model (The red line represents the number of individuals predicted by the model to be at high risk of SMPP, and the blue one 
represents the number of people with SMPP. MPP: Mycoplasma pneumonia pneumonia; Complex: SCRPT model consisting of serum S100 A8/A9, 
imaging CT, serum retinol-binding protein, whole blood large platelet count, Treg cell counts; Clinical: SCRPT model without serum S100 A8/A9
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that Mycoplasma   pneumoniae  can induce the release 
of inflammatory mediators, thereby triggering a cas-
cade of host immune responses [40]. Consequently, we 
conducted a comprehensive analysis of 23 clinical and 
serological parameters associated with SMPP. These 
parameters include circulating inflammatory biomark-
ers [41], enzymatic markers for assessing liver and kid-
ney function integrity [35, 42], indices of physiological 
status, variables reflecting the body’s internal milieu 
[43], and markers indicative of host immune status [44]. 
Alterations in these indicators contribute to the clinical 
manifestations of severe pneumonia with multiple organ 
dysfunction syndrome (MODS), including symptoms 
such as fever, inflammation, hepatic and renal impair-
ment, myocarditis, and vasculitis. Utilizing these 23 
indicators, the study employed eight advanced ML algo-
rithms to develop a diagnostic model for SMPP. Among 
these algorithms, the LightGBM algorithm demonstrated 
superior performance, attributed to its exceptional data-
processing capabilities, such as efficient feature selec-
tion, rapid handling of large-scale datasets, and robust 
generalization ability [45]. These characteristics make 
LightGBM particularly suitable for multistage disease 
classification tasks. This finding lays the groundwork for 
future research, especially in optimizing ML models to 
improve the diagnostic accuracy of severe pneumonia.

To enhance the model’s clinical utility, we identified five 
key predictive variables consistently selected across 
multiple ML  algorithms:  S100 A8/A9 levels, chest  CT 
findings, RBP, PLCR and Treg cells. These are closely 
associated with severe pneumonia or inflammation. Our 
earlier research confirmed S100 A8/A9 was link to the 
severity of childhood CAP [46]. Studies also showed that 
serum RBP4 can activate the NLRP3 inflammasome in 
macrophages, releasing abundant inflammatory factors 
and triggering inflammation [47]. Reports noted reduced 
serum RBP levels in COVID-19 patients [48], consistent 
with our analysis. Moreover,MPP is associated with a 
hypercoagulable state, and observed platelet ratio altera-
tions may correlate with systemic inflammatory severity 
[49]. Research revealed that pulmonary Treg cells can 
affect lung infection severity by regulating the pulmonary 
γδT17–neutrophil axis [50]. Based on these 5 variables, 
the study constructed a visual and convenient SCRPT 
model. These studies bolster the credibility and clinical 
significance of the SCRPT model’s indicators.

DCA and CIC curves were utilized to further assess the 
clinical applicability of the model. Compared with diag-
nostic models based solely on S100A8/A9 or the SCRPT 
model excluding S100A8/A9, the complete SCRPT model 
demonstrated the highest predictive contribution. When 
the proportion of severe cases in the examined popula-
tion was less than 60%, the benefit of the SCRPT model 

was significantly higher than the model without S100A8/
A9 and the single S100 A8/A9 model. When the thresh-
old was greater than 0.6, the benefits of the single S100 
A8/A9 model were higher than SCRPT model with-
out S100A8/A9, but still slightly lower than the SCRPT 
model. In order to further explore the ability of the 
SCRPT model to discriminate SMPP in clinical diagno-
sis and treatment, CIC curve was plotted. The results 
showed that when the model threshold was around 0.4, 
the number of people with SMPP assessed by the model 
was close to the actual number of people with MPP, with 
a clinical decision cost of 0.429 and a clinical decision 
benefit of 0.571. When the threshold was 0.8, the assess-
ment ability of the SCRPT model was basically consist-
ent with the occurrence probability in clinical practice 
(Figure 5B). The findings unequivocally demonstrate that 
the SCRPT model functions as a rapid, convenient, and 
highly accurate tool for distinguishing severe pneumonia, 
with considerable clinical application value. By simplify-
ing the model, we aim to diminish dependence on com-
plex imaging data. The study also aims to enhance the 
model’s operability and scalability, thereby facilitating its 
application in diverse clinical settings.

In the simplified model, S100 A8/A9 contributed more 
than other indicators. This finding may also contrib-
ute to exploring the mechanisms underlying the onset 
of pneumonia or even MPP. Reports show S100 A8/A9 
regulates inflammatory cell activation and migration [51], 
and boosts inflammatory mediator release [52], wors-
ening the inflammatory response [53]. As key factors in 
the initiation and progression of inflammation [54], have 
been reported to be involved in MPP [55]. This study also 
revealed that its expression in SMPP was higher than that 
in mild MPP (P < 0.05), and  its diagnostic efficacy was 
better than that of commonly used clinical inflammatory 
markers. To further explore the potential of S100 A8/A9 
as an independent biomarker for diagnosing SMPP, this 
study compared its diagnostic efficacy with improvement 
in diagnostic performance achieved tthat of the SCRPT 
model. AS shown in Supplementary Table  S3, although 
the AUC of S100 A8/A9 in the training set and the vali-
dation set was lower than that of the SCRPT model (P < 
0.05), the area under the curve was still greater than 0.8, 
and there was no difference in the diagnostic efficacy 
between the two in the prospective cohort (P > 0.05). In 
order to more comprehensively evaluate the improve-
ment in diagnostic performance achieved through the 
incorporation of variables, a comparative analysis was 
conducted between the  models.  As seen in Supplemen-
tary Table S4, in the training set, the diagnostic efficacy 
of the SCRPT model was significantly better than that of 
the  SCRPT model  without S100 A8/A9 (both NRI and 
IDI were positive and  P < 0.05), indicating a significant 
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improvement in model performance after the introduc-
tion of S100 A8/A9. In both the internal and prospec-
tive validation sets, no statistically significant difference 
in diagnostic efficacy was observed between the SCRPT 
model  and the model without S100A8/A9. However, 
both NRI  and IDI  were positive, indicating a moder-
ate enhancement in diagnostic efficacy attributable to 
S100 A8/A9. This finding suggests that S100 A8/A9 has 
potential utility in diagnosing SMPP. The model’s ability 
to predict severe risk using the single marker S100 A8/
A9 is particularly advantageous in primary healthcare 
settings with limited medical technology. Compared to 
traditional diagnostic methods that rely on serial imag-
ing or subjective clinical evaluations, the SCRPT model 
offers greater feasibility across various clinical environ-
ments. In well-resourced hospitals, the SCRPT model 
improves diagnostic precision, whereas in primary care 
settings, the use of S100 A8/A9—easily obtained through 
routine blood tests—serves as a practical alternative to 
complex tests, effectively addressing infrastructural con-
straints. Additionally, the online risk calculator facilitates 
real-time decision-making, even in remote areas, thereby 
bridging technological disparities.

This study has limitations. First, as a single - center ret-
rospective cohort study using a prospectively - collected 
dataset, it carries inherent design - related biases. Future 
research should involve multicenter cohorts to validate 
the current findings. Second, due to the small sample 
size, 10 stratification variables were used. A large number 
of stratification variables with a small sample size may 
lead to optimistic results in internal model validation. 
Thus, subsequent studies must increase the sample size 
to enhance model accuracy.

In summary, this study innovatively combines various 
data and applies machine - learning algorithms to develop 
a model, eventually establishing the SCRPT online calcu-
lation platform. This platform is a reliable tool for early 
screening of SMPP in children. Additionally, the study 
has identified serum S100 A8/A9 as a biomarker, which 
can be used for the early diagnosis of SMPP in resource - 
limited medical settings.
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