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Abstract
Chronic obstructive pulmonary disease (COPD) is projected to become the third leading cause of death globally 
by 2030, accounting for 71.9% of chronic respiratory diseases cases in 2019. Early COPD (ECOPD) diagnosis heavily 
relies on clinically monitoring of lung functions, with a strong influence from smoking exposures, which may 
not align well with disease progression. As such, the GOLD 2022–2024 guidelines emphasize the discovery of 
biological markers over clinical symptoms for early detection. This study explores the biological characteristics 
of ECOPD in a cohort of 176 adults from China Pulmonary Health Study, consisting 88 healthy controls (HC) and 
88 clinically diagnosed ECOPD, matched for age, gender and smoking history. While lung function tests revealed 
differences between HC and ECOPD, no significant distinctions were observed in routine blood tests. Proteomics 
analysis identified 377 plasma proteins common to both groups, with low-intensity proteins driving group-specific 
differences. Univariable logistic regression and gene set enrichment analysis identified 248 proteins associated with 
ECOPD, particularly those involved in inflammation process. Validation in an independent cohort confirmed the 
association of 15 proteins with ECOPD. Metabolomics analysis of the plasma identified 1788 metabolites, 137 of 
which were found linked to ECOPD. Machine learning models indicated that a multi-omics approach provided the 
best predication of lung function (R2 = 0.74), while proteomics alone effectively diagnosed ECOPD (AUC = 0.949). 
Similarity network fusion and clustering revealed two ECOPD subgroups: one by markers of inflammatory-immune 
response, and the other by the presence of those related to hemostasis or the vascular smooth muscle function. 
These findings underscore the potential of multi-omics integration in distinguishing ECOPD subgroups and 
predicting disease risk.
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Introduction
Chronic obstructive pulmonary disease (COPD) is char-
acterized by persistent respiratory symptoms and air-
flow limitation, caused by abnormalities in the airway or 
alveolar, typically resulting from prolonged exposure to 
harmful particles or gases. According to the Global Bur-
den of Disease, in 2019, there were 212  million COPD 
patients worldwide, contributing to 74.4  million global 
Disability-Adjusted Life Years (DALYs), which accounted 
for 71.9% of the burden from chronic respiratory diseases 
[1]. Although COPD may originate early in life, its clinical 
manifestations usually take years to emerge, making early 
identification a challenge [2]. Early COPD (ECOPD) is 
the initial phase in the pathogenesis of COPD, related to 
the primary mechanisms that eventually lead to COPD. 
Clinically, it is defined as individuals under 50 years of 
age with at least 10-pack-years of smoking exposure and 
a baseline forced expiatory volume in 1 s (FEV1)/forced 
vital capacity (FVC) below the lower limit of normal 
(LLN) [3]. However, only 24% of those diagnosed with 
ECOPD develop full blown COPD within a decade [4–5]. 
This indicates that the understanding of ECOPD remains 
incomplete.

The biological “early” stage of COPD, linked to the 
starting mechanism of the disease. Therefore, for effective 
prevention, it’s crucial to detect biological early COPD, 
rather than the clinical early COPD that shows the first-
noticed symptoms, functional impairments, or structural 
abnormalities. Omics approaches, such as transcrip-
tomics, proteomics, and metabolomics, have been 
applied to uncover molecular mechanisms and define the 
biological characters of COPD. For example, transcrip-
tomic biomarkers (e.g., ASAH1, CEBPD, FOXP1, TCF7) 
are linked to lung function [6–7], proteomic markers 
(e.g., TIMP1, BPIFB1, CNDP1) have been identified [8–
10], and metabolomic biomarkers (e.g., sphingolipids) 
are found associate with exacerbation [6]. Unfortunately, 
these studies primarily use plasma samples from COPD 
patients at the late stage, limiting their utility for early 
screening. There are still no unified and feasible diagnos-
tic biological characters for ECOPD.

In this study, we performed proteomics and metabo-
lomics analysis on plasma samples from the China Pul-
monary Health Study (CPHS) cohort [11] and a separate 
validation cohort to investigate the biological signatures 
of ECOPD. We identified proteomic and metabolomic 
signatures associated with clinically defined ECOPD, 
characterized by lung function and smoking exposures. 
ECOPD displayed pro-inflammatory proteomic and 
metabolomic features, including pathways related to 
leukocyte immunity and aspartate metabolism. Nota-
bly, a proteomic least absolute shrinkage and selection 
operator (LASSO) regression model outperformed other 
omics-based models in distinguishing healthy controls 

(HC) from ECOPD. Additionally, 20 individuals in HC 
group exhibited multi-omics features similar to those of 
ECOPD, suggesting a higher likelihood of progressing to 
ECOPD.

Methods and materials
Materials and reagents
Acetonitrile (ACN) and water were purchased from 
Fisher Chemical. 1,4-dithiothreitol (DTT), Uera and 
iodoacetamide (IAA) were purchased from Sigma-
Aldrich. Sequencing Grade Modified Trypsin was pur-
chased from Promega. BCA kit was purchased from 
Beyotime, and iRT kit was purchased from Biognosys. 
Protease Inhibitor Cocktail was purchased from Calbio-
chem. All other chemicals used were of analytical grade 
or higher.

Study participants
The participants in discovery cohort were collected from 
the National Population Health Survey (CPHS) cohort. 
The CPHS cohort was collected between June 2012 and 
May 2015 covering participants from both the cities and 
counties in Guizhou Province. The inclusion and exclu-
sion criteria of healthy controls were confined as the 
individuals younger than 50 years, baseline FEV1/FVC 
ratio over the LLN, without comorbidities, including car-
diovascular diseases (coronary artery disease, hyperten-
sion, heart failure, arrhythmias), cerebrovascular diseases 
(stroke), and diabetes. The inclusion criteria of ECOPD 
patients were confined as the individuals younger than 
50 years, baseline FEV1/FVC ratio falling below the LLN, 
with or without smoking exposure. Exclusion criteria of 
ECOPD encompassed individuals who had undergone 
thoracic, abdominal, or eye surgery within the previous 
three months, those admitted to hospital for cardiac con-
ditions in the preceding month, individuals with a heart 
rate exceeding 120 beats per minute, those receiving 
antibacterial chemotherapy for tuberculosis, and females 
who were pregnant or breastfeeding. As a result, the 
discovery cohort consisting of 88 healthy controls and 
88 ECOPD patients was collected, matched by age, gen-
der and smoking exposure. The other validation cohort 
consisting of 35 healthy control and 35 ECOPD from 
Guizhou Province was independently collected using the 
same inclusion and exclusion criteria.

Written informed consent was procured from all par-
ticipants, and the study was conducted in accordance 
with the Declaration of Helsinki and approved by the eth-
ics review committee of Beijing Chaoyang Hospital, Cap-
ital Medical University (201002008) and Institute of Basic 
Medical Sciences, Chinese Academy of Medical Sciences 
(065-2021), along with other collaborating institution, 
Bijie Qixingguan District People’s Hospital (202101).
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Plasma collection and clinical information collection
After the blood routine test, the whole blood in EDTA 
Vacutainer tubes were immediately placed on ice and 
centrifuged (3000 r/min, 10 min at 4  °C) within 30 min. 
The separated plasma was stored at -80  °C until further 
use. Meanwhile, detailed characteristics (e.g., identifica-
tion number, age, sex, and clinical indicators) were com-
prehensively collected.

Sample Preparation for proteomics and data analysis
Protein digestion and fractionation
Multiple plasma samples were combined into a pooled 
mixture for spectral library construction. For each sam-
ple, the protein concentration was measured with the 
BCA protein assay kit (Thermo Fisher Scientific, 23227) 
according to the instruction provided by the manufac-
turer. 10 µL plasma was reduced with 5 mM dithio-
threitol for 30  min at 56  °C and alkylated with 11 mM 
iodoacetamide for 15 min at room temperature in dark-
ness. The alkylated samples were transferred to ultrafil-
tration tubes for FASP digestion. The samples were firstly 
replaced with 8 M urea for 3 times at 12,000 g at room 
temperature for 20 min, and then replaced with 100 mM 
TEAB for 3 times. Trypsin was added at 1:50 trypsin-to-
protein mass ratio for digestion at 37  °C overnight. The 
peptide was recovered by centrifugation at 12,000  g for 
10 min at room temperature, and repeated twice. Finally, 
the combined peptides were desalted by C18 SPE col-
umn. Additionally, the sample was then fractionated into 
fractions by high pH reverse-phase HPLC using Agilent 
300 Extend C18 column (5  μm particles, 4.6  mm ID, 
250  mm length). As to mixed samples for library con-
struction, peptides were first separated with a gradient 
of 8–32% acetonitrile in 10 mM ammonium bicarbonate 
pH 9 over 60  min into 60 fractions. Then, the peptides 
were combined into 12 fractions and dried by vacuum 
centrifuging.

DDA data acquisition and analysis
For data-dependent acquisition (DDA) —LC-MS/MS 
analysis, the iRT kit was added to all the fractions accord-
ing to manufacturer’s instructions. Next, the tryptic 
peptides were dissolved in solvent A (0.1% formic acid, 
2% acetonitrile), directly loaded onto a home-made 
reversed-phase analytical column (25-cm length, 100 μm 
i.d.). Peptides were separated with a gradient from 4 to 
24% solvent B (0.1% formic acid in 90% acetonitrile) over 
60 min, 24–32% in 29 min and climbing to 80% in 3 min 
then holding at 80% for the last 3 min, all at a constant 
flowrate of 500 nL/min on an EASY-nLC 1200 UPLC sys-
tem (Thermo Fisher Scientific). The separated peptides 
were analyzed in DDA mode by Q Exploris 480 (Thermo 
Fisher Scientific) with a nano-electrospray ion source.

For the annotation of DDA data, the resulting DDA 
data were processed with Spectronaut (v 15.0) to gen-
erate the spectral library. Tandem mass spectra were 
searched against the human SwissProt database (20376 
entries, http://www.expasy.ch/sprot), which was con-
catenated with a reverse decoy database. Trypsin/P was 
specified as the cleavage enzyme, allowing up to 2 miss-
ing cleavages. In the calibration and main searches, the 
mass tolerance for precursor ions and fragment ions were 
set “Dynamic” and the correction factor were set 1. Carb-
amidomethyl on Cys was defined as a fixed modification, 
while acetylation of the protein N-terminal and oxidation 
of Met were defined as variable modifications. The false 
discovery rate (FDR) was adjusted to < 1% for both pep-
tide-spectrum matches (PSMs) and proteins. All other 
settings were used by default unless otherwise noted.

DIA data acquisition and analysis
For data-independent acquisition (DIA) —LC-MS/MS 
analysis, the iRT kit was added to all the samples accord-
ing to manufacturer’s instructions. The LC gradient was 
kept consistent with those in the spectral library build-
ing method. The separated peptides were analyzed in 
Q Exploris 480 (Thermo Fisher Scientific) with a nano-
electrospray ion source. The full MS scan resolution 
was set to 60,000 for a scan range of 400–1,200 m/z. 
The data acquisition was performed in DIA mode. Each 
cycle contains one full scan followed by 70 DIA MS/MS 
scans with predefined precursor m/z range. The HCD 
fragmentation was performed at a normalized collision 
energy (NCE) of 28%. The fragments were detected in the 
Orbitrap at a resolution of 15,000. Fixed first mass was 
set as 20 m/z. Automatic gain control (AGC) target was 
set at 5E5. For the database search of DIA data, all DIA 
data were analyzed in Spectronaut (v15.0) with the same 
parameter applied in DDA spectral library construction, 
imported the established spectral library, and predicted 
the retention time of peptide segments through nonlin-
ear correction.

Proteomics data preprocessing and bioinformatic analysis
Proteins with a missing ratio over 50% in both ECOPD 
and healthy control groups were removed. Protein inten-
sities were quantile normalized, log2-transformed, and 
missing values were imputed using the minimal value 
of entire dataset. In R 4.4.1, the glm function was used 
to perform logistic regression, adjusting for gender, 
age, and smoking exposure, to assess the association 
between normalized protein levels and ECOPD. For dif-
ferentially protein expression analysis, the limma pack-
age in R was employed, using linear models. Adjusted p 
values were calculated using the Benjamini & Hochberg 
correction. Significantly altered proteins were filtered 
based on adjusted p values < 0.05 and absolute log2 fold 

http://www.expasy.ch/sprot
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change > log2(1.3). Gene set enrichment analysis (GSEA) 
were carried out using the clusterProfiler package (ver-
sion 4.2.2 in R 4.4.1), with gene ranked by log2 fold 
change.

Sample Preparation for metabolomics and data analysis
Metabolites extraction and untargeted metabolomics 
measurement
10 µL plasma was extracted with 100 µL Methanol. The 
solution was kept at -20 ℃ for 10 min and the resulting 
mixture was transferred into an Eppendorf tube and spun 
down at 15,000  g for 30  min at 4  °C. The supernatant 
was taken for LC-MS analysis. LC was performed using 
a Vanquish UHPLC system (Thermo Fisher) and Xbridge 
BEH Amide HILIC column (Waters) with 25 min gradi-
ent from acetonitrile to pH 9.5 aqueous buffer [12]. LC 
was coupled by electrospray ionization (± 3.3  kV) to 
a Orbitrap Exploris 480 mass spectrometer (Thermo 
Fisher). Injected sample volume was 5 µL.

Metabolomics data analysis
A reference metabolite spectral library consisting of 800 
metabolites was constructed by running the metabo-
lite standards. LC-MS raw data files (.raw) were sepa-
rately converted to mzXML format using ProteoWizard 
[13]. To facilitate the process of metabolomic analysis, 
an automated pipeline with a graphical interface named 
as MetaPipe (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​b​i​o​i​​n​f​​o​-​i​​b​m​s​​-​p​u​m​​c​/​​
M​e​t​a​P​i​p​e) was developed by integrating several popular 
toolkits such as XCMS, CAMERA, NetID and Metabo-
AnalystR [14–17]. For this study, the key parameters of 
the XCMS module for peak picking were set as follows: 
method = “centWave”, ppm = 5; snthr = 2; peakwidth = c 
[1, 4]. Peaks were then refined based on the raw data by 
in-house scripts and submitted to the CAMERA mod-
ule for adducts filtration with default parameters. Last, 
metabolites were identified by the NetID module taking 
both the local reference metabolite library with RT infor-
mation generated by LC-MS and the standard MS2 spec-
tral library of metabolites from HMDB [18]. A manual 
independent double check was also performed according 
to the local reference metabolite library using El-Maven 
with ppm ≤ 5 and an retention time (RT) threshold of 
0.5 min. Both peaks from manual selection and MetaPipe 
were merged to remove redundancy [19].

Metabolites with over 50% missing ratio in both 
ECOPD and healthy control groups were removed for 
the subsequent statistical analyses. The normalization 
was followed the strategy of MetaboAnalyst [17] using 
the median normalization and log2-tranformed as well 
as imputation of missing value with a tenth of the mini-
mal value. The significantly altered metabolites were 
filtered using the criteria of adjusted p values less than 
0.05 and variable importance in projection (VIP) scores 

larger than 1, derived from the Orthogonal Partial Least 
Squares Discriminant Analysis (OPLS-DA) model. In 
addition, metabolomic pathway enrichment analysis was 
also performed employing MetaboAnalyst.

Multi-omic bioinformatic analysis
The LASSO and elastic net algorithms were conducted 
using the glmnet package (version 4.1-8 in R 4.4.1), 
which utilizes a predefined log-scale grid search across a 
sequence of hyperparameter(s) and combines with cross-
validation to identify the optimal regularization param-
eter. A 10-fold cross-validation was applied to calculate 
the average mean squared error (MSE). The hyperpa-
rameters for LASSO and elastic net analysis was set to 
the values that minimized the cross-validated MSE. The 
SNFtool package (version 2.3.1) was used for SNF analy-
sis. Further differential expression (DEP) and gene set 
enrichment analysis (GSEA) were conducted as previ-
ously described.

Statistical analysis
The quantitative data was analyzed using Graphpad 
Prism 9.0.0 (GraphPad Software, Inc, ​h​t​t​p​s​:​/​/​w​w​w​.​g​r​a​p​
h​p​a​d​.​c​o​m​/​​​​​)​. For continuous data, The Shapiro–Wilk or 
Kolmogorov–Smirnov test was used to determine the 
normally distribution of the data and the Levene test 
to test the equality of variance. Normally distributed 
data with equal variances were analyzed by Student t 
test, while non-normally distributed data or those with 
unequal variances were analyzed using Mann–Whit-
ney U test. Categorical data were analyzed with the chi-
squared (χ²) test. In addition, multiple hypothesis testing 
was corrected using the Benjamini–Hochberg (BH) pro-
cedure to adjust the p values and control the FDR. Unless 
otherwise specified, a p value < 0.05 was considered sta-
tistically significant.

Results
CPHS cohort characteristics
To explore the biological characteristics of ECOPD, a dis-
covery cohort of 176 adults was selected from the China 
Pulmonary Health Study (CPHS). This cohort consisted 
of 88 healthy control (HC) and 88 clinically confirmed 
ECOPD patients, matched by age, gender, and smok-
ing exposure. ECOPD was diagnosed based on a base-
line FEV1/FVC ratio below the LLN. The cohort was 
predominantly male (55.7%), middle-aged (mean ± s.d.: 
43.99 ± 2.82) and included a high proportion of smokers 
(48.9%) (Table  1). Compared to HC, the ECOPD group 
demonstrated significantly reduced lung function param-
eters (FEV1, p < 0.001; FEV1% predicted, p < 0.001; and 
FEV1/FVC, p < 0.001), while no significant differences 
were observed in other clinical laboratory tests. These 
results suggest that standard blood tests are insufficient 

https://github.com/bioinfo-ibms-pumc/MetaPipe
https://github.com/bioinfo-ibms-pumc/MetaPipe
https://www.graphpad.com/
https://www.graphpad.com/
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for differentiating ECOPD from HC. Furthermore, no 
strong correlation was found between lung function 
and smoking exposure, indicating that increased smok-
ing exposure in individuals under 50 does not necessar-
ily result in lung function impairment. Subsequently, we 

recruited another 35 HC and 35 ECOPD patients from 
Guizhou Province as a separate validation cohort. Pro-
teomics and metabolomics analysis were performed in 
both cohorts to find the biological molecular characteris-
tics of ECOPD (Fig. 1).

Table 1  Demographic table of CPHS population
Healthy control Early COPD p value
N = 88 N = 88

Gender (%) Male 49 (55.7) 49 (55.7) 1
Female 39 (44.3) 39 (44.3)

Age (year, mean (SD)) 43.99 (2.82) 43.99 (2.82) 1
BMI (kg/m2, mean (SD)) 23.96 (3.56) 23.73 (2.98) 0.648
Cigarsmoker (%) Smoker 43 (48.9) 43 (48.9) 1

Non-smoker 45 (51.1) 45 (51.1)
Packyr (year, mean (SD)) 8.60 (11.44) 8.31 (10.59) 0.86
FEV1 (%, mean (SD)) 2.89 (0.52) 2.49 (0.63) < 0.001***
FEV1%pred (%, mean (SD)) (SD)) 99 (0.12) 84 (0.15) < 0.001***
FEV1/FVC (%, mean (SD)) 80.96 (4.58) 66.44 (6.99) < 0.001***
WBC (109/L, mean (SD)) 6.79 (1.72) 6.32 (1.65) 0.071
RBC (109/L, mean (SD)) 4.90 (0.49) 4.83 (0.55) 0.339
HGB (g/L, mean (SD)) 149.20 (17.71) 148.18 (19.30) 0.716
PLT (109/L, mean (SD)) 205.16 (57.74) 205.65 (69.81) 0.959
NEU rate (%, mean (SD)) 60.77 (10.49) 58.34 (12.39) 0.163
EOS rate (%, mean (SD)) 2.53 (2.00) 2.95 (3.19) 0.29
FBG (mmol/L, mean (SD)) 5.32 (1.56) 5.27 (1.06) 0.796
TG (mmol/L, mean (SD)) 1.78 (1.31) 1.82 (1.51) 0.85
TCH (mmol/L, mean (SD)) 4.85 (0.87) 4.75 (0.96) 0.452
HDL (mmol/L, mean (SD)) 1.13 (0.25) 1.07 (0.22) 0.085
LDL (mmol/L, mean (SD)) 2.55 (0.62) 2.54 (0.62) 0.916
CPHS, China Pulmonary Health Study; FEV1, Forced expiratory volume in 1 s; FVC, Forced vital capacity; BMI, Body mass index; WBC, White blood cell count; RBC, Red 
blood cell count; HGB, Hemoglobin; PLT, Platelet; NEU rate, Neutrophil ratio; EOS rate, Eosin ratio; FBG, Fasting blood glucose; TG, Triglyceride; TCH, Total cholesterol; 
HDL, High-density lipoprotein; LDL, Low-density lipoprotein; SD, Standard Deviation; COPD, Chronic Obstructive Pulmonary Disease

Fig. 1  Schematic diagram of current study and analysis workflow

 



Page 6 of 12Li et al. Respiratory Research          (2025) 26:167 

Proteomic signatures of ECOPD
Mass spectrometry (MS)-based data independent 
acquisition (DIA) was employed to perform plasma 
proteomics analysis on the CPHS cohort. Of the 902 pro-
teins measured in total, 377 were detected in both HC 
and ECOPD group. High-abundance proteins shared 
between both groups included ALB, IGLC2, IGKV3D-11, 
IGKC and APOA1. In contrast, low-abundance proteins 
varied: ANPEP, CST3, LPA, VWF and ISLR are low in 
HC, while MSN, SOD3, CHL1, LRP1 and ISLR are low 
in ECOPD, highlighting differences between the groups 
(Fig. 2A, Table S1). To analyze protein signatures, logistic 
regression, adjusted for gender, age, and smoking expo-
sure, was used to assess the association between nor-
malized protein levels and ECOPD. This identified 248 
proteins significantly linked to ECOPD (Table S2).

A comparison between smokers and non-smokers in 
the CPHS cohort revealed 17 differentially expressed pro-
teins (DEPs). Of these, 13 were associated with ECOPD, 
with KRT13 and DCD consistently identified in both dis-
covery and validation cohorts, suggesting enhanced air-
way epithelial differentiation and antimicrobial activity 
in smokers (Fig. 2B and Figure S1). Gene-set enrichment 
analysis (GSEA) of the ECOPD linked proteins revealed 
that proteins involved in “leukocyte-mediated immu-
nity”, such as CLU, AZGP1, and F2, were upregulated in 
ECOPD, indicating increased inflammation (Fig. 2C and 
Figure S2). To validate this finding, we also performed 
plasma proteomics analysis in the validation cohort 
using the same MS-based DIA method. Notebably, 15 
proteins remained significantly associated with ECOPD 
after adjusting for baseline factors in both discovery 

Fig. 2  Proteomic signatures of biological ECOPD. (A) Overview of the proteomic profiles of CPHS populations. Protein abundances from plasma of 
ECOPD (red) and HC (blue) are shown, with quantification using log2 transformed quantile normalized intensity. The highest- and lowest-abundance pro-
teins are highlighted in the boxed region. (B) Expression levels of KRT13 and DCD in both the CPHS cohort and validation cohort. (C) Expression changes 
of CLU, AZGP1 and F2 in HC and ECOPD in the CPHS cohort. (D) Validation of observed protein expression changes in the independent validation cohort
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and validation cohort. These included keratin proteins 
(KRT2, KET9, KRT10, KRT13), complement proteins 
(C1QC, C5), and pro-inflammatory factors (IL1RAP, 
ITIH4, RARRES2, SAA4) (Fig. 2D).

Metabolomic signatures of ECOPD
Next, untargeted metabolomics analysis was performed 
to assess the metabolic changes in the plasma of HC and 
ECOPD patients. To facilitate high-throughput analysis, 
an integrated pepeline called MetaPipe was developed (​
h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​b​i​o​i​​n​f​​o​-​i​​b​m​s​​-​p​u​m​​c​/​​M​e​t​a​P​i​p​e). After 
manually validating the peaks generated by MetaPipe 
against a local reference metabolite library, 1,788 metab-
olites were identified in both HC and ECOPD groups 
within the discovery cohort (Table S3). To further explore 
metabolomic alterations, variable importance in projec-
tion (VIP) scores, derived from the OPLS-DA model, 
were combined with a t-test to identify 137 metabolites 
significantly associated with ECOPD (adjusted p < 0.05, 
VIP score ≥ 1, Table S3). Pathway enrichment analysis 
revealed an upregulation in amino acid metabolism such 
as alanine and asparagine (Fig. 3A and Figure S3). In the 
validation cohort, four metabolites: tryptophan, adrenic 
acid, 2-hydroxyethanesulfonate, and lysine exhibited a 
similar decreasing trend in ECOPD compared to HC in 
both the discovery and validation cohorts (Fig. 3B).

FEV1/FVC prediction models
To investigate the relationship between lung function and 
biological features, machine learning models were devel-
oped to predict baseline FEV1/FVC using proteomic 

dataset, metabolic dataset, clinical features or their 
combinations. These models included: Meta-FEV1/FVC 
based on 137 associated metabolites, Pro-FEV1/FVC 
based on 248 associated proteins, Multi-FEV1/FVC using 
both metabolites and proteins, All-FEV1/FVC incor-
porating metabolites, proteins and 12 clinical features 
as a comprehensive model. To identify key features and 
reduce multicollinearity among the features, the LASSO 
and elastic net (ENET) algorithms with 10-fold cross-val-
idation were applied, generating sparse models for each 
category. In metabolomics analysis, LASSO and ENET 
performed similarly. However, in proteomics and multi-
omics analysis, LASSO outperformed ENET (Fig.  4A). 
Therefore, LASSO models were used for subsequent 
analysis.

Single-omic models (metabolomics or proteomics) 
provided good FEV1/FVC prediction, with R²values of 
0.62 for the metabolites-based model (Meta-FEV1/FVC) 
and 0.69 for the proteins-based model (Pro-FEV1/FVC). 
Combing metabolomics and proteomics improved pre-
diction accuracy (R² = 0.72, Multi- FEV1/FVC), and inte-
grating clinical data achieved the best performance (R² = 
0.74, All- FEV1/FVC). This indicates a strong association 
between multi-omics data and lung function (Fig.  4B). 
Regarding the area under curve (AUC) of receiver oper-
ating characteristic (ROC) curve among all the FEV1/
FVC models, the one using only proteomics data per-
formed best in identifying ECOPD (Figure S4), highlight-
ing the robustness of proteomics for ECOPD diagnosis. 
This might be because metabolite levels fluctuate rapidly, 

Fig. 3  Metabolic characterizations of biological ECOPD. (A) Pathway enrichment analysis of metabolites related to ECOPD. (B) Changes in tryptophan, 
adrenic acid, 2-hydroxyethanefulfonate and lysine in the validation cohort
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as they are influenced by both disease state and environ-
mental or genetic factors.

Multi-omics atlas revealed the biological subtypes of 
ECOPD
To comprehensively characterize the biological signa-
tures of ECOPD, proteomics and metabolomics data 
from the China Pulmonary Health Study (CPHS) cohort 
were integrated using similarity network fusion (SNF). 
Sample-by-sample similarity networks for each omics 
platform were calculated and iteratively updated to cre-
ate a fused similarity network reflecting multi-omics 
information (Fig.  5A). This process identified four dis-
tinct subgroups (Fig. 5B). ECOPD patients clustered into 
Groups 1 and 2, alongside 20 healthy controls, demon-
strating significant similarities in biological characteris-
tics with ECOPD (Fig. 5B).

Further differential expression (DEP) and gene set 
enrichment analysis (GSEA) indicated that SNF-cluster 1 
was characterized by a high expression of acute inflam-
mation-related proteins (e.g., OSMR, SAA1, VCAM1, 
CD163, ICAM1) and proteins involved in the amino-
glycan metabolic process (e.g., NAGLU, CTBS, ITIH3) 
(Fig.  5C, Table S4), suggesting an infection and inflam-
mation profile. In contrast, SNF-cluster 2 was enriched 

in proteins associated with platelet activation and blood 
coagulation (e.g., FERMT3, TLN1), indicating a coagula-
tion-active ECOPD subgroup.

Differential metabolite analysis revealed that most 
metabolites were overexpressed in SNF-cluster 2, par-
ticularly those linked to vascular smooth muscle con-
traction and galactose metabolism (e.g., 14,15-EET and 
stachyose) (Fig.  5D, Table S5). Only a few metabolites, 
such as C19H41O6P and C37H72O5, were highly expressed 
in SNF-cluster 1. The 20 healthy controls in SNF-clusters 
1 and 2, with metabolomic and proteomic profiles resem-
bling those of ECOPD, were considered at risk of devel-
oping the disease.

Comparisons of FEV1/FVC, Omics-based FEV1/FVC, 
Multi-FEV1/FVC, and All-FEV1/FVC among at-risk 
populations and HC in in SNF-clusters 3 and 4 (Fig. 5E) 
revealed that the FEV1/FVC values for those at risk fell 
between those of healthy controls and ECOPD patients. 
This indicates that these individuals share similar biologi-
cal characteristics with ECOPD, suggesting a heightened 
likelihood of developing the condition.

In summary, multi-omics integration can stratify 
ECOPD into two groups: one characterized by infection 
and inflammation features, and the other by coagula-
tion and vascular smooth muscle contraction features. 

Fig. 4  Multi-omics analysis for lung function prediction and ECOPD diagnosis. (A) Performance comparison of LASSO and ENET algorithms in different 
FEV1/FVC prediction models. (B) Correlation between predicted FEV1/FVC in different models and measured FEV1/FVC
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Fig. 5  Multi-omics analysis reveals ECOPD subtypes. (A) SNF analysis of metabolomics and proteomics data from CPHS. (B) Cluster analysis reveals four 
subgroups within the CPHS cohort. (C) Proteins highly expressed in SNF-cluster1 and SNF-cluster2. (D) Elevated metabolites in SNF-cluster1 and SNF-
cluster2. (E) FEV1/FVC ratios for HC, ECOPD and at-risk individuals
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Additionally, multi-omics-based FEV1/FVC metrics can 
further indicate the potential risk for ECOPD. The iden-
tified biomarkers and molecular pathways offer promis-
ing targets for early diagnosis and personalized treatment 
strategies, ultimately improving patient outcomes. Our 
findings could aid in screening individuals with ECOPD 
for early intervention.

Discussion
In recent years, early COPD (ECOPD) has been defined 
as occurring in individuals under 50 years old with a 
smoking history of ≥ 10 pack-years and a baseline FEV1/
FVC ratio below the lower limit of normal (LLN). The 
2023 Global Initiative for COPD [20] report emphasized 
that ECOPD primarily refers to the biological early stages 
of the disease. However, current diagnostic criteria focus 
predominantly on lung function and exposure, overlook-
ing important biological characteristics. This study offers 
critical insights into the biological features of ECOPD 
through multi-omics integration, including proteomics 
and metabolomics.

Most ECOPD patients showed a significant decline in 
lung function parameters (FEV1, FEV1% predicted, and 
FEV1/FVC) compared to healthy controls. However, 
disease progression is also influenced by factors such as 
smoking status, physiological traits, and clinical perfor-
mance. To explore these variations, our findings highlight 
distinct molecular signatures between ECOPD patients 
and healthy controls, demonstrating the value of multi-
omics data in improving the understanding and diag-
nosis of ECOPD. We identified 248 proteins associated 
with ECOPD, many of which are linked to inflammation-
related pathways. The validation of specific proteins, such 
as keratins, complement proteins, and pro-inflammatory 
factors, in an independent cohort supports their poten-
tial as biomarkers for ECOPD detection.

Metabolomic profiling revealed changes in metabolites 
related to aspartate metabolism, indicating that meta-
bolic dysregulation is a hallmark of ECOPD and offering 
new therapeutic possibilities. Multi-omics models signifi-
cantly outperformed single-omics models in predicting 
lung function (R2 = 0.74), highlighting the added value 
of integrating diverse biological data. Key proteins and 
metabolites associated with FEV1/FVC variability show 
strong diagnostic potential. Through Similarity Network 
Fusion (SNF) and clustering, we identified two distinct 
ECOPD subgroups: one characterized by infection and 
inflammation, and the other by coagulation and vascular 
smooth muscle contraction, suggesting potential for tai-
lored treatment approaches.

This study identifies multi-omics signatures of ECOPD, 
develop a proteomics-based model for FEV1/FVC pre-
diction, and perform multi-omics SNF-cluster analyses. 
It provides a comprehensive understanding of ECOPD 

and proposes a novel definition for individuals at risk 
based on multi-FEV1/FVC models. Our data show that 
plasma-based multi-omics studies mirror lung tissue 
pathogenesis, with proteomics revealing airway inflam-
mation markers such as leukocyte-mediated immu-
nity, complement proteins, pro-inflammatory factors, 
and keratins. These findings align with previous studies 
describing COPD as characterized by airway inflamma-
tion, small airway remodeling, and emphysema [21–22]. 
The roles of inflammation and epithelial development 
in airway remodeling are consistent with our findings of 
enriched inflammasome and epithelial cell differentiation 
pathways.

Untargeted metabolomics offers unbiased insights into 
metabolic changes related to physiological and pathologi-
cal states. However, challenges remain, such as the reso-
lution of mass spectrometry and metabolite complexity. 
The MetaPipe pipeline, which integrates multiple metab-
olite analysis tools, streamlines data processing and puta-
tive metabolite identification. Aspartate metabolism 
was particularly highlighted in ECOPD, suggesting its 
involvement in systemic inflammation and impaired pul-
monary function.

Despite the strength of our findings, limitations include 
the relatively small cohort size, which may affect general-
izability, and the cross-sectional design, which precludes 
causal inferences. Larger, multi-center longitudinal stud-
ies are necessary to validate these findings and establish 
temporal relationships between molecular changes and 
disease progression. In addition, our current findings 
were limited to Chinese population, which need further 
validations on cohorts from multiple ethnic populations 
with different gene background. Future research should 
focus on functionally validating the identified biomark-
ers and incorporating additional omics layers for a more 
comprehensive understanding of ECOPD pathogenesis.

In conclusion, this study demonstrates the power of 
multi-omics integration in elucidating the complex biol-
ogy of ECOPD. The identified biomarkers and molecular 
pathways offer promising targets for early diagnosis and 
personalized treatment strategies, ultimately improv-
ing patient outcomes. Our findings could facilitate the 
early screening and intervention for individuals at risk of 
ECOPD.
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