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Abstract 

Background Globally, chronic respiratory diseases have become the third leading cause of death, including chronic 
obstructive pulmonary disease (COPD) and asthma, and have been threatening human life for a long time. To allevi-
ate the disease burden, it is crucial to develop rapid and convenient screening methods for COPD, preserved ratio 
impaired spirometry (PRISm), and asthma. Volatile organic compounds (VOCs) in breath can reflect the pathophysi-
ological processes of disease, thereby having the potential to serve as a promising approach for diagnosing respira-
tory diseases. Can we identify VOC markers in breath with the potential to serve as classification indicators, and further 
establish learning models for the early detection of COPD, asthma, or PRISm patients?

Methods This is a cross-sectional study in which exhaled breath samples were collected from 184 patients 
with COPD, 66 patients with asthma, 72 PRISm individuals, and 45 healthy individuals. From August 2023 to June 2024, 
the breath samples were analyzed using portable micro gas chromatography (CXBA-Alpha, ChromX Health Co., Ltd.). 
Potential VOC markers for classification were identified by univariate and multivariate analyses. Subsequently, clas-
sification models were established by machine learning algorithms, based on these VOC markers along with baseline 
characteristics. The sensitivity, specificity, and accuracy of these models were calculated to assess their overall discrimi-
natory performance.

Results A total of 367 patients were enrolled in our study. We identified nine VOCs distinguishing COPD patients 
from healthy controls, nine VOCs differentiating the PRISm population from healthy controls, five VOCs separating 
asthma patients from healthy controls, five VOCs distinguishing COPD patients from asthma patients, and seven VOCs 
differentiating the PRISm population from asthma patients based on breathomics feature selection. We utilized five 
algorithms to establish diagnostic models and selected the optimal one among them. The random forest model 
best distinguished COPD from healthy controls with an area under the receiver operating characteristic curve (AUC) 
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of 0.92 ± 0.01. The support vector classifier (SVC) model was most effective in separating PRISm from healthy con-
trols, achieving an AUC of 0.78 ± 0.01. Logistic regression performed well in discriminating asthma from PRISm (AUC, 
0.74 ± 0.02) and COPD (AUC, 0.92 ± 0.01), in contrast, the random forest model differentiated asthma from healthy 
controls with an AUC of 0.81 ± 0.02.

Conclusion VOC panel-based classification models have the potential to be a novel strategy for the discrimination 
of chronic respiratory diseases. Using the portal micro gas chromatography enables swift detection of chronic respira-
tory disease and, most importantly, facilitates the rapid identification of PRISm individuals within the population.

Highlights 

1. We have identified a group of volatile organic compounds present in exhaled breath that can be used to distin-
guish between patients with COPD, asthma, PRISm individuals, and health individuals.

2. This study pioneers a breathomics-based rapid identification method for PRISm individuals, offering a novel strategy 
for early detection and management of pre-chronic obstructive pulmonary disease.

Introduction
As the third leading cause of death in the world, chronic 
respiratory diseases have been threatening human life 
for a long time [1]. Chronic obstructive pulmonary dis-
ease (COPD) and asthma are two common chronic 
respiratory diseases. COPD poses a significant global 
health challenge and imposes a substantial macroeco-
nomic burden worldwide. Based on data provided by the 
Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) 2025, the global prevalence of COPD is 10.3% 
(GOLD2025). By 2050, the number of COPD patients 
will reach 600 million [2]. Asthma impacts up to 262 mil-
lion individuals globally [3]. What’s more, asthma per-
sists as a prominent contributor to the global economic 
burden, encompassing both direct and indirect expenses 
[3]. Primarily affecting the lungs, both asthma and COPD 
have similar symptoms, including breathlessness, cough-
ing, and the production of sputum. Also, numerous stud-
ies have demonstrated that both asthma and COPD are 
multisystemic diseases. By 2060, chronic respiratory dis-
eases and related conditions will cause more than 5.4 mil-
lion annual deaths [2]. Due to the non-specific nature of 
the clinical manifestations of chronic respiratory disease, 
many patients with COPD and asthma remain undiag-
nosed, leading to an underestimation of the global health 
burden posed by these conditions [4–6]. According to 
GOLD 2025 and Global Initiative for Asthma (GINA) 
2024, pulmonary function testing remains the major 
diagnostic criteria for COPD and asthma. However, this 
diagnostic method is time-consuming. Usually, it takes 
approximately 30  min for each patient to complete a 
full set of lung function tests. What’s more, the results 
of pulmonary function testing are highly dependent on 
patients’ condition and level of cooperation. Patients 
with extremely severe COPD are  often unable to com-
plete the pulmonary function test according to the 

standard operation due to their critical condition, result-
ing in the generation of inaccurate lung function report. 
Therefore, developing a rapid, accurate, and convenient 
diagnostic method is important for alleviating the burden 
imposed by COPD and asthma.

Preserved ratio impaired spirometry (PRISm) denotes 
non-obstructive pulmonary function abnormalities char-
acterized by a normal forced expiratory volume in the 
first second (FEV1)/ forced vital capacity (FVC) ratio but 
a reduced FEV1 [7]. PRISm can be considered as an early 
stage of COPD. Globally, approximately 22.2%-35.8% of 
individuals with PRISm will eventually progress to COPD 
[8]. Although the progression of PRISm is unpredictable, 
extensive research has indicated that PRISm is signifi-
cantly related to increased incidence of COPD compli-
cations and all-cause mortality [9–11]. Therefore, early 
screening and long-term follow-up of the PRISm popu-
lation represent an effective strategy to reduce the inci-
dence rate of COPD.

Exhaled breath analysis through volatile organic com-
pounds (VOC) is an emerging non-invasive method for 
the differential diagnosis of diseases, particularly respira-
tory diseases [12–14]. VOCs are broadly categorized into 
endogenous and exogenous sources. Exogenous VOCs 
predominantly originate from molecules introduced via 
the oral cavity and gastrointestinal tract, including resid-
ual food and beverages, salivary components, and micro-
bial metabolites derived from oral or gut microbiota [15]. 
What’s more, occupational exposure can also affect the 
types of exogenous VOCs detected [16]. Additionally, 
occupational exposure represents a critical determi-
nant of exogenous VOC profiles. For instance, xylene—
a well-documented environmental pollutant—has been 
detected in exhaled breath samples, with its concentra-
tion positively correlated with occupational histories 
involving painting, printing, petroleum refining, gasoline 
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handling, or laboratory procedures requiring solvent use 
[17].

Endogenous VOCs in exhaled breath are generated by 
various metabolic processes within the human body and 
reach the alveoli via blood-gas exchange [18]. Conse-
quently, alterations in exhaled VOCs can reflect different 
pathophysiological conditions of patients [19]. Currently, 
common techniques for detecting exhaled VOCs include 
gas chromatography-mass spectrometry (GC–MS), pro-
ton transfer reaction mass spectrometry (PTR-MS), 
and electronic noses (eNose) [20–22]. What’s more, 
some new methods include exhaled breath condensate 
(EBC) is now used for detecting  H2O2 and other exhaled 
breath parameters for use as a diagnostic tool [23]. Previ-
ous research has indicated that exhaled VOCs hold the 
potential to serve as effective biomarkers for diagnosing 
various respiratory diseases, including COPD, lung can-
cer, asthma, and COVID-19 [24]. Exhaled VOC can not 
only facilitate the diagnosis of different diseases but also 
effectively reflect the severity and phenotypes [25]. How-
ever, there are limited studies on the differentiation of 
various chronic respiratory diseases, and the results are 
often controversial. Furthermore, to date, no research has 
been conducted on the recognition of PRISm.

Previously we have developed a portable micro gas 
chromatography (micro GC) device for diagnosing and 
monitoring COVID-19, colorectal cancer, acute respira-
tory distress syndrome (ARDS), etc., based on exhaled 
breath analysis [26–31]. These studies suggest that breath 
analysis holds significant promise as a non-invasive, 
rapid, and potentially accurate diagnostic tool for vari-
ous medical conditions. However, limited research has 
been conducted on differentiating between patients 
with  COPD, asthma, PRISm, and  healthy individuals 
using VOCs, and the feasibility of distinguishing among 
these groups remains uncertain.

Given the growing emphasis on improving the grass-
roots screening capacity for chronic respiratory dis-
eases, rapid screening tests for distinguishing COPD 
and asthma patients, as well as PRISm individuals from 
healthy individuals, are of paramount importance. In 
this study, we aim to utilize a non-invasive breathom-
ics test to identify VOC markers for the discrimination 
of chronic respiratory disease and subsequently develop 
models using machine learning for the early detection of 
PRISm, COPD, and asthma patients (Figure S1).

Method
Study participants
Individuals diagnosed with COPD, asthma, or PRISm by 
respiratory physicians at Ruijin Hospital were recruited at 
the respiratory function test room between August 2023 
and June 2024 to investigate potential differences among 

various chronic respiratory diseases. Simultaneously, 
healthy controls, defined as individuals with normal pul-
monary function, were enrolled during the same period. 
Informed consents were obtained from each participant. 
Anonymous analysis was subsequently conducted to pro-
tect patient privacy.

Demographic characteristics collection
Demographic information, clinical manifestations, under-
lying disease, and the results of pulmonary functional 
tests were collected using a smartphone application. The 
demographic information included age, sex, smoking 
condition, and occupational exposure to smoke. Clinical 
manifestations included respiratory symptoms (such as 
cough, sputum, dyspnea, hemoptysis, and acute exacerba-
tions of COPD, if applicable), scales related to COPD, and 
medication status. Information on common underlying 
diseases associated with COPD, such as cardiovascular 
abnormalities, digestive system disease, and cerebrovas-
cular disease, was also collected. All participants com-
pleted the pulmonary functional test. Indicators including 
forced expiratory volume in the first second (FEV1%), 
FEV1/FVC, inspiratory Capacity (IC), maximum expira-
tory flow 50 (MEF50), MEF75, and maximal mid-expir-
atory flow 75/25 (MMEF75/25) were recorded. Besides, 
vital signs, including heart rate and blood pressure, were 
also measured using a portable blood pressure monitor.

Exhaled sample collection
For enrolled participants, VOCs were collected from 
each individual after they had cleaned their oral cav-
ity. The subjects remained at rest while providing the 
exhaled sample. Under the guidance of doctors, the sub-
jects’ mouths were covered with an exhalation mask. 
They inhaled normally through the nose and exhaled 
slowly through the mouth for 3  min. Exhaled samples 
were directly injected into the gas inlet for field VOC 
analysis and automatically analyzed in real-time using a 
portable Micro Gas Chromatography (micro GC) device 
(CXBA-Alpha, ChromX Health Co., Ltd.). To ensure the 
integrity of subsequent samples, a nitrogen flush was per-
formed between patient samples. This procedure purges 
any residual VOCs from the system, thereby prevent-
ing cross-contamination. Concurrently, an additional 
3-min breath sample was collected using a thermal des-
orber tube  pre-processed with 99.99% nitrogen, which 
was connected to a micro GC-mass spectrometry device 
(MSD) for further VOC identification [32]. The thermal 
desorber contained carbopack X and carbopack B, which 
adsorb VOCs at room temperature and desorb VOCs at 
high temperatures.



Page 4 of 14Tian et al. Respiratory Research          (2025) 26:173 

μGC detection
The working principle of portable gas chromatogra-
phy has been extensively described in previous studies 
[26–31]. Briefly, the micro GC system consists of three 
distinct silicon-based microfabricated chips: a multi-
adsorbent packed micropreconcentrator-injector (μPCI) 
for VOC capture, preconcentration, and injection; a 10 m 
long microcolumn integrated with thin-metal heaters 
and temperature sensors for temperature-programmed 
separations; and a microfabricated helium discharge 
photoionization detector [32]. To separate the volatile 
organic compounds (VOCs) in the exhaled breath sam-
ples, we used a micro-GC system. The micro-GC com-
ponent performs the separation based on the volatility 
of the compounds. Following separation, compounds 
are detected and identified using a mass spectrometry 
device (MSD), which analyzes the mass-to-charge ratio 
(m/z) of individual compounds. This tandem combina-
tion of micro-GC and MSD enables both the separation 
and precise identification of VOCs. To optimize the anal-
ysis process and reduce detection load, only 20% of the 
total samples were analyzed using mass spectrometry. 
This sampling approach was chosen to balance the need 
for high-quality compound identification while manag-
ing the resource and time constraints of the study. Dur-
ing a full analysis cycle, 600 ml of the breath sample was 
directly drawn through a Nafion tube to remove mois-
ture, then through the μPCI at a fixed flow rate of 200 ml 
per minute using a mini pump. The captured VOCs were 
subsequently injected into a microcolumn by rapid ther-
mal desorption (~ 300 ms). Within the column, the VOC 
mixture was separated under conditions of a 1  mL/min 
carrier gas flow rate and a temperature program with a 
ramp rate of 10°C/min from 25°C to 180°C [29].

Additionally, 20% of the exhaled samples were also 
collected using a thermal desorber tube (TD 100-xr, 
MARKES), which was connected to a micro GC-mass 
spectrometry device (MSD) for further VOC identifi-
cation. This comprehensive platform comprises a high 
through put automatic injector, a homemade thermal 
desorber, a μGC-μPID, and an MSD (Agilent 5977B). The 
tube undergoes thermal desorption under standard set-
tings: a flow path at 180 °C, and a pre-purge at 100 mL/
min for 2  min to remove water moisture. The sample 
tube  was desorbed at 300  °C for 10  min, with the flow 
rates set at 60 mL/min. Mass spectra were obtained using 
Qualitative Analysis 10.0 (MassHunter) software and 
cross-referenced with the NIST 2017, Version 2.3 mass 
spectrum library.

To ensure the quality of each sample, environment 
monitoring and quality control procedures were con-
ducted weekly. Each sample was monitored in the back-
ground, and any substandard samples were discarded. 

The device performed automatic self-cleaning after each 
sampling session.

Data preprocessing
To minimize the impact of system noise and detection 
errors, raw chromatograms underwent sequential pre-
processing steps. These included spike removal, base-
line correction, noise reduction, and retention time 
alignment. The data were then manually inspected, and 
samples with detection failures were excluded. A deriv-
ative-based peak quantification algorithm was applied 
to identify VOC peaks and calculate the area under the 
peak. The results were organized into a matrix, with each 
column corresponding to the retention time of a spe-
cific VOC peak. Normalization was conducted to allow 
for semi-quantitative analysis across samples with vary-
ing concentration levels. Notably, VOCs or samples with 
a low response rate were excluded from further analysis 
due to the sample size requirements of statistical tests.

Data analysis
Dataset
The dataset included variables such as COPD, asthma, 
PRISm, and healthy individuals for analysis. The dataset 
was randomly split into two subsets: a discovery set, com-
prising 70% of the total dataset, used for biomarker dis-
covery and model training; and a test set, accounting for 
30% of the total dataset, reserved exclusively for model 
evaluation. To address the class imbalance in the dataset, 
we employed a combination of strategies to ensure reli-
able model performance: 1. Stratified data splitting: we 
used stratified splitting during data partitioning to pre-
serve the class distribution across the training, validation, 
and test sets, ensuring that each set represented the origi-
nal label proportions. 2. Tree-based algorithms: we chose 
tree-based machine learning algorithms, such as random 
forest and XGBoost, which are known to be less sensi-
tive to class imbalances due to their built-in mechanisms 
for handling such disparities. 3. Class weight adjustment: 
in models that allow for class weight modifications (e.g., 
logistic regression), we adjusted the class weights to com-
pensate for the imbalance, assigning higher weights to 
the minority classes to improve model sensitivity.

By combining these approaches, we mitigated the 
effects of class imbalance while maintaining model gen-
eralizability and avoiding the risks associated with over-
sampling methods.

Biomarker discovery
A series of statistical tests were performed to identify 
potential VOC markers. The Mann–Whitney U test 
was used for univariate analysis, and false discovery rate 
(FDR) correction was applied to account for multiple 
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comparisons. A significance threshold of p < 0.05 was 
set to determine statistical significance. For multivari-
ate analysis, features with a variable importance in pro-
jection (VIP) score greater than 1 were selected using 
Orthogonal Partial Least Squares Discriminant Analysis 
(OPLS-DA). This approach allowed for the identification 
of variables that significantly contributed to classifica-
tion. Given the limitations related to sample size and dis-
tribution, the screening criteria were adjusted to enhance 
the robustness and reliability of the findings.

Modeling and evaluation
A combined dataset of VOC biomarkers and clinical 
information (including gender, age, BMI, smoking status, 
and occupational exposure) was extracted from the origi-
nal feature dataset. The following models were selected 
for this study: logistic regression, support vector machine 
(SVM), Random Forest, eXtreme Gradient Boosting 
(XGBoost), and K-Nearest Neighbor (KNN). Optimal 
hyperparameters for each model were determined using 
five-fold cross-validation on the discovery set. These 
models were then trained on the entire discovery set. 
The performances of the trained models were evaluated 
on the test set using metrics such as F1 score, accuracy, 
sensitivity, specificity, and the area under the receiver 
operating characteristic (ROC-AUC) curve. To ensure 
a robust assessment of overall performance, confidence 
intervals were calculated based on 30 repeated samplings 
of the discovery and test sets.

Statistics analysis
Demographic characteristics and clinical information 
were compared between different groups using t-tests for 
continuous variables and Chi-Square tests for categorical 
data. All other analyses were conducted using SPSS soft-
ware (version 26, IBM ©). All steps of the analysis, includ-
ing chromatogram data preprocessing, VOC biomarker 
selection, clinical information statistics, and machine 
learning modeling, were performed using Python soft-
ware (version 3.9.18).

Result
Demographic characteristics
We recruited 474 individuals from Ruijin Hospital, 
Shanghai Jiao Tong University from August 2023 to 
June 2024. A total of 367 participants (111 female and 
256 male) were enrolled after quality control exclusions. 
Among these samples, 184 (51.3%) patients were diag-
nosed with COPD, 72 (20.1%) with PRISm, 66 (18.0%) 
with asthma, and 45 (12.5%) were classified as healthy 
individuals (Fig. 1). The age of all participants was from 
11 to 88 years. Compared with the healthy group, COPD 
patients and PRISm patients had a higher rate of smoking 

(22.3% vs 26.4% vs 20%, P < 0.01) and a more severe 
smoking habit (P < 0.01). A total of 204 patients (55.6%) 
reported having underlying disease. Cardiovascular dis-
ease was the most common comorbidity, particularly in 
COPD and PRISm groups, at 33.7% and 50% respectively. 
Regarding the pulmonary functional test, both obstruc-
tive pulmonary ventilation dysfunction and small airway 
obstruction were significantly more severe in the COPD 
group than in the other groups (P < 0.01). The baseline 
characteristics of the study population are shown in 
Table 1.

For patients diagnosed with COPD, we further ana-
lyzed the severity and clinical manifestations of the 
disease. Among all COPD patients, 70 (38.0%) were 
classified as having mild or moderate COPD (GOLD 
stages I and II), while 105 were diagnosed with severe or 
extremely severe COPD (GOLD stages III and IV). There 
was no statistically significant difference in demographic 
characteristics between these two groups. Regard-
ing clinical manifestations, we utilized both the COPD 
Assessment Test (CAT) and the British Medical Research 
Council (MRC) dyspnea scale. The average CAT score in 
the COPD group was 11.6, and the average MRC score 
was 2.5.

Characteristic VOCs between different group
Univariate and multivariate analyses revealed that three VOC 
signatures (VOC@464.830, VOC@521.740, VOC@537.162) 
were significantly increased in concentration among COPD 
patients compared to healthy controls. Conversely, six sig-
natures (VOC@531.953, VOC@691.343, VOC@762.87, 
VOC@815.632, VOC@910.533, VOC@916.565) were sig-
nificantly decreased in the COPD group. Qualitative 
analysis confirmed the chemical formula of 6 out of the 
9 VOCs, including Acetone (VOC@464.830), Cyclopentane 
(VOC@521.740), Tetrachloroethylene (VOC@537.162), 
p-Xylene (VOC@680.489), Nonane (VOC@762.870), 
Decane (VOC@815.632), Limonene (VOC@828.336), and 
Undecane (VOC@910.533). The results of VOC markers 
distinguishing the COPD group and healthy controls are 
shown in Table S1, and the violin plot is shown in Fig. 2a. 
We then compared these nine signatures with differential 
demographic characteristics. Our finding indicated no 
significant correlation between the 9 VOCs and the differ-
ential demographic characteristics. A heatmap depicting 
this correlation is displayed in Fig. 3.

We applied the same analytical approach to identify 
VOC signatures specific to the PRISm group. Our analy-
sis revealed that nine signatures were significantly differ-
ent in concentration in the PRISm population compared 
to the healthy controls. These nine VOC markers were 
identical to those found in the COPD group, although 
the direction of change for some markers differed. 
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Specifically, while p-Xylene was significantly decreased 
in the COPD group (fold change = 0.03), it showed an 
increase in the PRISm group. Detailed information on 
these VOC markers is provided in Table S2, and the cor-
responding violin plot is presented in Fig. 2b.

To further investigate the impact of disease sever-
ity on exhaled molecules, we compared VOCs between 
patients with mild/moderate COPD and those with 
severe/ extremely severe COPD. Since the statistical 
analysis-based screening method did not yield statis-
tically significant signatures, we employed a machine 
learning approach – Extra Trees – for this screening. 
The result showed that 3 molecules (VOC@539.215, 
VOC@739.913, VOC@549.273) were statistically sig-
nificant in distinguishing between mild/moderate COPD 
patients and severe/extremely severe COPD patients 
(P < 0.05) (Fig. 2c, Table S3).

Regarding asthma patients, seven molecules were identi-
fied as statistically significant in distinguishing between the 
asthma and PRISm group. This included three increased 
molecules (VOC@534.960, VOC@718.195, VOC@896.700) 
and four decreased molecules (VOC@505.569, VOC@ 

511.205, VOC@537.162, VOC@659.025). Qualitative analysis 

also identified the chemical formulas for some of these 
VOCs, specifically, 2-Ethyl-oxetane (VOC@505.569), 
Furan (VOC@511.205), and Benzene (VOC@537.162) 
(Fig. 2d, Table S4).

We further compared the asthma group with both the 
COPD group and the healthy control group. The result 
indicated that six VOCs (VOC@472.892, VOC@534.960, 
VOC@544.875, VOC@634.346, VOC@762.870, VOC@ 

815.632) were able to differentiate asthma from COPD. 
In addition, five VOCs (VOC@464.830, VOC@537.162, 
VOC@576.902, VOC@769.194, VOC@828.336) could 
differentiate asthma from the healthy control group 
(Fig. 2e-f, Table S5-6).

Classification models based on VOCs
Utilizing the VOC markers we had identified previously, 
in conjunction with baseline characteristics, we con-
structed five models using five different machine learning 
methods to differentiate between various groups. Subse-
quently, we assessed the effectiveness of these classifica-
tion models by generating ROC curves and calculating 
AUC values. Five models were constructed using five 
popular methods. The optimal model was selected based 

Fig. 1 Flowchart for the study
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on the highest AUC value. The performance of five mod-
els is illustrated in Table 2.

For the differentiation between the COPD group 
and healthy controls, the Random Forest model out-
performed the other models, achieving an AUC of 
0.92±0.01. The best specificity achieved was 85% and the 
best sensitivity achieved was 90%. Upon incorporating 
demographic characteristics, the model’s performance 
improved marginally, reaching an AUC of 0.92±0.01, 
with 91% of specificity and 84% of sensitivity (Figure 4a). 
We follow the same procedure to create a classification 
model for distinguishing the PRISm group from healthy 
controls. The SVC model demonstrated the highest effi-
ciency in this case, with an AUC of 0.78±0.01 as well as 
specificity of 69% (Figure 4b), and notably, its best sensi-
tivity reached 87%. Additionally, we constructed discrim-
ination models for asthma versus PRISm. The logistic 
regression model for this comparison achieved an AUC 
of 0.74±0.02, with a specificity of 82% and sensitivity of 
66% (Figure 4c). We also developed classification models 
for differentiating between asthma and COPD, as well 
as between asthma and healthy controls. Both models 
exhibited excellent performances, achieving AUCs of 
0.92±0.01 with a specificity of 85% and sensitivity of 92% 
for the differentiation of asthma from COPD using the 
logistic regression model, and 0.81±0.02 with a specificity 

of 80% and sensitivity of 79% for distinguishing asthma 
from healthy controls using the Random Forest model, 
respectively (Figure 4d-e).

Discussion
To our knowledge, this is the first study to investigate 
the differential exhaled VOCs between COPD, PRISm, 
asthma, and other chronic respiratory diseases using por-
tal micro gas chromatography. Remarkably, we further 
developed classification models based on exhaled VOCs 
and demographic characteristics through machine learn-
ing. We highlight here that exhaled VOCs can effectively 
discriminate between patients with COPD, PRISm, or 
other chronic respiratory diseases and health control. 
Additionally, we demonstrated that classification mod-
els conducted by machine learning have the potential to 
enable quick and efficient screening for PRISm. Although 
other research has also established diagnostic models for 
chronic respiratory diseases, our classification models 
exhibited high efficiency (Table S7).

At present, common devices for analyzing exhale 
metabolism include GC–MS, PTR-MS, eNose, etc. 
However, these detection methods are limited by their 
complexity, high cost, inconvenience, and lengthy exami-
nation times. Other omics approaches, such as plasma 
metabolomics, are popular but also have limitations, 

Table 1 Baseline characteristics

Data are presented as n, mean ± sd or n (%), unless otherwise stated

FEV1 forced expiratory volume in 1 s, FVC forced vital capacity

Variable COPD (N = 184) PRISm (N = 72) Health (N = 45) Asthma (N = 66) P-values

Gender (%) < 0.01
 Male 160 (87.0) 43 (59.7) 28 (62.2) 25 (37.9)

 Female 24 (13.0) 29 (40.3) 17 (37.8) 41 (62.1)

 BMI 23.5 ± 3.5 23.6 ± 4.0 22.9 ± 3.4 23.0 ± 3.9 0.67

 Age 68.5 ± 8.4 61.2 ± 13.6 55.5 ± 15.4 52.8 ± 13.7 < 0.01
Smoking condition
 Current smoking (%) 41(22.3) 19(26.4) 9(20) 8(12.1) < 0.01
 Pack-day 1.2 1.1 0.7 0.54 < 0.01
 Occupational smoke expo-
sure (%)

48 (26.1) 16 (22.2) 3 (6.7) 13 (19.7) 0.035

Underlying disease (%) < 0.01
 Cardiovascular disease 62(33.7) 36(50) 3(6.7) 14(21.2)

 Digestive disease 5(2.7) 4(5.6) 2(4.4) 1(1.5)

 Others 36(19.6) 12(16.7) 2(4.4) 17(25.8)

Pulmonary functional test
 FEV1% 32.4 ± 20.9 59.9 ± 9.0 94 ± 13.4 71.1 ± 24.0 < 0.01
 FEV1/FVC 49.8 ± 15.6 82.7 ± 8.3 76.7 ± 6.2 68.8 ± 15.9 < 0.01
 IC 2.11 ± 0.6 2.52 ± 6.4 2.55 ± 3.2 2.4 ± 0.7 0.41

 MEF50 23.9 ± 16.4 51.82 ± 17.0 90.48 ± 24.2 45.6 ± 33.7 < 0.01
 MEF75 28.87 ± 18.2 82.4 ± 29.7 92.4 ± 19.5 49.5 ± 30.1 < 0.01
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including being expensive and inconvenient [33]. In the 
present study, we employed a highly portable device that 
operates in real-time and provides point-of-care test-
ing, enabling the simultaneous collection and analysis of 
exhaled samples. The results obtained from our devices 
were similar, and all models demonstrated high classifica-
tion performance.

Previous studies have already demonstrated that 
exhaled VOCs can distinguish between COPD patients 
and health subjects [34, 35]. The feature VOCs 

discovered in previous research ranged from 5 to 43, 
which were not exactly consistent [34–36]. Our research 
also identified nine compounds to distinguish COPD 
patients from healthy individuals. Some of the identified 
compounds were also identified previously, including 
nonanal, decane, acetone, and undecane [35, 37–40]. 
We also identified some VOCs that showed original-
ity in the compounds identified compared to previous 
studies, including limonene. Limonene significantly 
increases in the exhaled breath of patients with COPD 

Fig. 2 The relative concentration of the signature VOCs between different groups. a The relative concentration of the 9 VOCs between COPD group 
and healthy controls. b The relative concentration of the 9 VOCs between PRISm group and healthy controls. c The relative concentration of the 3 
VOCs between mild/moderate COPD group and severe/extremely severe COPD group. d The relative concentration of the 7 VOCs between asthma 
group and PRISm group. e The relative concentration of the 6 VOCs between asthma group and COPD group. f The relative concentration of the 5 
VOCs between asthma group and healthy controls

Fig. 3 Heat map of correlation between VOC markers and demographic characteristics
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and is considered to be associated with airway inflam-
mation and obstruction [41]. Previous studies demon-
strated that the use of limonene-contained capsules or 
drug can attenuate airway inflammation and obstruc-
tion in chronic bronchitis and acute lung injury animal 
models. The specific mechanism may related to TLR4 
signaling inhibition and NF-κB activation [41, 42]. 
Diagnostic models were also established in the previ-
ous study. However, the effectiveness of these models 
was not high. The reason may be related to the small 
sizes of these studies, the influence of different baseline 
characteristics, or algorithmic inadequacies [35, 37]. To 
improve the efficiency of our models, we enrolled more 
than one hundred COPD patients. Besides, machine 
learning was performed during model establishment 
and a training set was used to fit the optimal parameters 
for our model. What’s more, 30 times random sampling 
was performed to validate and adjust our model. All 
these efforts significantly increased the efficiency of our 
model, with an AUC of more than 0.9.

Although our study did not find significant correlations 
between the nine VOCs and demographic characteristics 
(e.g., age, gender), this does not imply that these VOCs 

are unrelated to respiratory diseases. Rather, it suggests 
that the VOCs identified are not demographic-specific 
but may be more closely linked to disease pathology 
itself. This supports the idea that VOCs are more strongly 
associated with the disease process than with demo-
graphic factors. Further research is needed to confirm 
the potential role of these VOCs as disease biomarkers, 
independent of demographic influences.

Interestingly, our work also identified 9 VOCs that 
can differentiate PRISm and health controls. These 5 
of  9 VOCs were  highly coincided with those found in 
COPD, although the tendency was not exactly the same. 
Compared with healthy controls, p-Xylene was signifi-
cantly decreased in the COPD group but increased in the 
PRISm group, suggesting its potential association with 
the occurrence of the disease. At present, there is little 
research related to this molecular and respiratory dis-
ease. A previous study had demonstrated that p-Xylene 
may related to the shorter leukocyte telomere length in 
human and therefore associated with molecular aging 
[43]. Considering the close relationship between COPD 
and molecular aging, the relationship between p-Xylene 
and COPD should be a focus of future studies. Some 

Table 2 Performance comparison of five algorithms for different chronic respiratory diseases discrimination

Groups Models AUC F1 Accuracy Sensitivity Specificity

COPD vs. healthy controls LogisticRegression 0.88 ± 0.02 0.89 ± 0.02 0.84 ± 0.02 0.83 ± 0.04 0.86 ± 0.03

SVC 0.91 ± 0.02 0.92 ± 0.01 0.87 ± 0.02 0.85 ± 0.04 0.90 ± 0.02

RandomForest 0.92 ± 0.01 0.92 ± 0.01 0.88 ± 0.02 0.84 ± 0.03 0.91 ± 0.02

KNN 0.91 ± 0.01 0.91 ± 0.02 0.86 ± 0.02 0.84 ± 0.04 0.88 ± 0.03

XGBoost 0.90 ± 0.02 0.89 ± 0.02 0.84 ± 0.02 0.87 ± 0.04 0.85 ± 0.03

PRISm vs. healthy controls LogisticRegression 0.74 ± 0.02 0.63 ± 0.03 0.69 ± 0.02 0.81 ± 0.06 0.65 ± 0.05

SVC 0.78 ± 0.02 0.70 ± 0.02 0.73 ± 0.02 0.87 ± 0.02 0.69 ± 0.03

RandomForest 0.70 ± 0.02 0.65 ± 0.02 0.67 ± 0.02 0.88 ± 0.04 0.58 ± 0.05

KNN 0.73 ± 0.02 0.59 ± 0.05 0.70 ± 0.02 0.82 ± 0.06 0.67 ± 0.04

XGBoost 0.70 ± 0.02 0.62 ± 0.02 0.66 ± 0.02 0.82 ± 0.06 0.60 ± 0.05

Asthma vs. PRISm LogisticRegression 0.74 ± 0.02 0.76 ± 0.01 0.72 ± 0.01 0.66 ± 0.04 0.82 ± 0.02

SVC 0.40 ± 0.09 0.67 ± 0.07 0.62 ± 0.04 0.39 ± 0.13 0.83 ± 0.10

RandomForest 0.74 ± 0.02 0.73 ± 0.03 0.70 ± 0.02 0.65 ± 0.05 0.80 ± 0.06

KNN 0.73 ± 0.02 0.76 ± 0.02 0.73 ± 0.02 0.64 ± 0.04 0.84 ± 0.03

XGBoost 0.71 ± 0.03 0.72 ± 0.04 0.68 ± 0.02 0.61 ± 0.06 0.81 ± 0.07

COPD vs. Asthma LogisticRegression 0.92 ± 0.01 0.90 ± 0.01 0.86 ± 0.02 0.92 ± 0.02 0.85 ± 0.02

SVC 0.92 ± 0.01 0.89 ± 0.01 0.85 ± 0.01 0.91 ± 0.02 0.84 ± 0.02

RandomForest 0.89 ± 0.01 0.88 ± 0.02 0.83 ± 0.02 0.86 ± 0.03 0.84 ± 0.04

KNN 0.90 ± 0.02 0.89 ± 0.01 0.84 ± 0.01 0.84 ± 0.03 0.85 ± 0.02

XGBoost 0.91 ± 0.01 0.88 ± 0.02 0.84 ± 0.02 0.91 ± 0.02 0.83 ± 0.03

Asthma vs. healthy controls LogisticRegression 0.79 ± 0.03 0.75 ± 0.03 0.75 ± 0.02 0.74 ± 0.05 0.83 ± 0.05

SVC 0.79 ± 0.02 0.75 ± 0.03 0.75 ± 0.02 0.74 ± 0.05 0.83 ± 0.04

RandomForest 0.81 ± 0.02 0.78 ± 0.03 0.76 ± 0.02 0.79 ± 0.04 0.80 ± 0.04

KNN 0.78 ± 0.02 0.60 ± 0.07 0.65 ± 0.03 0.71 ± 0.05 0.78 ± 0.05

XGBoost 0.79 ± 0.02 0.78 ± 0.02 0.75 ± 0.02 0.80 ± 0.04 0.77 ± 0.04
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Fig. 4 ROCs of the classification models. a The ROC curves of the classification models between COPD group and healthy controls. b The ROC 
curves of the classification models between PRISm group and healthy controls. c The ROC curves of the classification models between asthma 
group and PRISm group. d The ROC curves of the classification models between asthma group and COPD group. e The ROC curves 
of the classification models between asthma group and healthy controls
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research also showed that its isomer, M-p-Xylene, has 
a significant nonlinear relationship with the incidence 
of COPD [44]. What’s more, previous research has also 
proved that the predicated model based on the concen-
tration of M-p-Xylene in blood was related to the age at 
onset of chronic respiratory disease [45]. Furthermore, 
until now, the specific role of p-Xylene remains to be 
further studied. Additionally, we also identified acetone 
among these 9 signatures, which was previously reported 
to be exhalation flow-dependent [46]. Prior research has 
demonstrated that exhaled acetone levels increase with 
higher expiratory flow rates and the level of acetone had 
been used for measurement of disease severity in acute 
respiratory disease syndrome [46, 47]. Consequently, the 
decreased level of acetone in the PRISm groups indicated 
that a reduced expiratory flow may occur in PRISm. 
Notably, research on the role of acetone in reflecting 
airway obstruction remains limited. Given that acetone 
serves as a biomarker of energy metabolism status, its 
correlation with airway obstruction requires further 
investigation to elucidate underlying pathophysiological 
mechanisms.

Regarding the classification mode, the AUC of the 
model we established is 0.77. It is worth noting that the 
sensitivity of our classification mode reached 0.82, sug-
gesting the potential of this model as a screening method. 
The relatively low AUC for distinguishing PRISm from 
healthy controls, may limit the immediate utility of VOC-
based testing as a standalone screening tool for this spe-
cific disease. The modest performance can be attributed 
to several factors, including the subtle and heterogene-
ous nature of PRISm, which presents challenges in dis-
tinguishing it from healthy controls using exhaled breath 
VOCs alone. Additionally, the relatively small sample 
size and the focus on a specific patient cohort may have 
impacted the model’s ability to generalize across different 
populations. Given the exploratory nature of this study, 
future research should focus on refining the feature 
selection process and incorporating larger, more diverse 
datasets to improve model performance. Furthermore, 
combining VOC analysis with other diagnostic methods 
may enhance its sensitivity and specificity for detecting 
PRISm in clinical practice. As the field of breath-based 
diagnostics continues to evolve, further optimization of 
VOC-based models could lead to more reliable tools for 
early detection and disease differentiation.

We also discovered a couple of compounds that can 
distinguish asthma patients from those with COPD and 
PRISm. In terms of signatures differentiating asthma 
from COPD patients, we identified another exhalation 
flow-dependent compound – pentane. This finding sug-
gests that the mechanism of airway obstruction may 
differ between these two respiratory diseases. What’s 

more, in our research, we found furan to be distinctive 
between the asthma group and the PRISm group. Previ-
ous studies have shown that this molecule can induce the 
redox imbalance, genomic instability, and inflammation 
pathway in the lung [48]. Our result showed that, com-
pared to the PRISm group, the level of this compound 
was decreased in the asthma group. This suggests that, 
in addition to pulmonary functional impairment, PRISm 
may also involve other structural and genetic changes.

It should be noted that our result demonstrated dis-
tinct patterns in mid-to-small airway function across 
study groups, as evidenced by MEF50 and MEF75 meas-
urements. COPD patients exhibited the lowest MEF50 
and MEF75 values, consistent with severe small airway 
obstruction—a pathophysiological hallmark of COPD 
characterized by progressive distal airway remodeling. 
Meanwhile, PRISm and asthma group also present mild 
to moderate small airway obstruction, which is in line 
with previous studies. There are significant differences 
among the three groups in terms of the degree of small 
airway obstruction. Therefore, the VOC-based machine 
learning models we have established can, in a certain 
sense, also effectively distinguish the degree of small air-
way obstruction.

Pulmonary function testing (PFT) remains the gold 
standard for diagnosing chronic respiratory diseases. 
However, its application in primary care settings is often 
limited by several challenges, including a lack of trained 
personnel, insufficient access to proper equipment, 
and poor patient cooperation. In this context, our non-
invasive portable micro-GC device emerges as a promis-
ing alternative for implementation in primary care. The 
micro-GC requires minimal training for both physicians 
and patients, ensuring ease of operation and high patient 
compliance. Based on our clinical experience, patients 
have demonstrated excellent cooperation, enabling the 
entire testing process to be conducted smoothly. Addi-
tionally, the compact size of the micro-GC makes it par-
ticularly suitable for primary care facilities with limited 
space. Given the critical role of screening for chronic 
respiratory diseases in primary and community hospi-
tals, the micro-GC can serve as an efficient triage tool to 
identify high-risk individuals who may require further 
spirometry or specialist referral. By establishing simpli-
fied panels of key VOCs associated with PRISm, COPD, 
and asthma, large-scale screening initiatives can be 
implemented to reduce diagnostic delays, particularly in 
regions with limited access to conventional pulmonary 
function testing. Considering its operational simplicity 
and convenience, the micro-GC represents a promising 
tool for the early screening of chronic respiratory dis-
eases, especially in resource-constrained primary care 
settings.
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While our study provides important insights into the 
diagnostic potential of exhaled breath for detecting pul-
monary diseases, a limitation is the incomplete chemi-
cal identification of some VOCs. The untargeted nature 
of the analysis, combined with the inherent challenges of 
mass spectrometry in detecting low-abundance VOCs 
and distinguishing them from noise interference, con-
tributed to the lack of confirmation for some markers. 
Despite this, the presence of these unidentified VOCs 
may still have biological significance, as they could 
be involved in disease-specific metabolic pathways or 
inflammatory processes. Further research focusing on 
the qualitative identification and biological relevance 
of these VOCs is essential to fully understand their role 
in pulmonary disease diagnosis. In future studies, more 
advanced techniques such as high-resolution mass spec-
trometry or complementary analytical methods could 
help improve the identification and characterization of 
these markers, offering deeper insights into the potential 
biomarkers of disease.

It’s worth noting that, the study is the individualized 
hyperparameter tuning applied to each disease differen-
tiation model. While this strategy was employed to opti-
mize the detection performance of the biomarkers for 
each specific disease (COPD, Asthma, PRISm), it may 
introduce variability across the models, complicating 
direct comparisons. Moreover, the use of distinct hyper-
parameters for each dataset could lead to increased com-
putational cost and a higher risk of overfitting, as models 
may become overly tailored to the idiosyncrasies of each 
dataset rather than capturing more generalizable pat-
terns. Future work could consider exploring cross-vali-
dation techniques or a more consistent hyperparameter 
optimization approach to reduce these potential issues 
and improve model robustness across different clinical 
contexts.

It is crucial to acknowledge the limitations of this study. 
Firstly, although the research scale of our study is larger 
than most previous studies, the number of participants 
remains insufficient, leading to the performance of some 
classification models being less than satisfactory. Thus, 
further studies with a larger population are necessary to 
evaluate and refine our classification models and hope-
fully, independent validation can be fulfilled in future 
studies. Secondly, the relatively short duration of the 
research period limited our follow-up with the PRISm 
group, preventing us from fully assessing the predicted 
value of VOCs we identified. Despite establishing clas-
sification models for COPD, asthma, and PRISm, ongo-
ing follow-up is essential to evaluate the predicting 
value of identified VOCs and related predicting models. 
Thirdly, exhaled VOCs are susceptible to artifacts from 
gastrointestinal gas. Attempts to reduce the effects of 

this limitation were made by asking patients to fast for 
two hours. What’s more, although the detection range of 
micro GC is not as extensive as that of GC–MS, it com-
pensates with its exceptional speed and portability. Micro 
GC is particularly advantageous for rapid on-site analysis 
and real-time monitoring. Lastly, consistent with the epi-
demiological profile of COPD, the enrolled participants 
demonstrated imbalances in age and gender distribu-
tion, which may limit the generalizability of our findings 
to younger or female populations. Further studies will be 
conducted with stratified sampling to balance age and 
gender distribution. Despite these limitations, we would 
like to emphasize the potential roles of VOCs in the diag-
nosis of chronic respiratory disease, as well as in the early 
screening of the PRISm population.

Conclusion
In conclusion, we have identified several potential VOC 
markers related to COPD, PRISm, and asthma. The clas-
sification models based on these VOCs and baseline 
characteristics showed good-to-excellent performance 
in distinguishing between different groups. This study 
suggests that the VOC panel-based classification model 
holds potential as a novel strategy for chronic respiratory 
diagnosis and, more importantly, for the rapid identifica-
tion of PRISm individuals within the population.
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