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Abstract
Background Mesothelioma is a rare cancer that originates from the pleura and peritoneum, with its incidence 
increasing due to asbestos exposure. Patients are frequently diagnosed at advanced stages, resulting in poor survival 
rates. Therefore, the identification of molecular markers for early detection and diagnosis is essential.

Methods Three mesothelioma datasets were downloaded from the GEO database for differential gene expression 
analysis. Instrumental variables (IVs) were identified based on expression quantitative trait locus (eQTL) data for 
Mendelian randomization (MR) analysis using mesothelioma Genome-Wide Association Study (GWAS) data from the 
FINNGEN database. The intersecting genes from MR-identified risk genes and differentially expressed genes were 
identified as key co-expressed genes for mesothelioma. Functional enrichment analyses, including Gene Ontology 
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), as well as 
immune cell correlation analysis, were performed to elucidate the roles of key genes in mesothelioma. Additionally, 
the differential expression of key genes in mesothelioma was validated in independent GEO datasets and TCGA 
datasets. This integrative research combining multiple databases and analytical methods established a robust model 
for identifying mesothelioma risk genes.

Results The research conducted in our study identified 1608 genes that were expressed differentially in 
mesothelioma GEO datasets. By combining these genes with 192 genes from MR analysis, we identified 14 key genes. 
Notably, MPZL1, SOAT1, TACC3, and CYBRD1 are linked to a high risk of mesothelioma, while TGFBR3, NDRG2, EPAS1, 
CPA3, MNDA, PRKCD, MTUS1, ALOX15, LRRN3, and ITGAM are associated with a lower risk. These genes were found to 
be enriched in pathways associated with superoxide metabolism, cell cycle regulation, and proteasome function, all 
of which are linked to the development of mesothelioma. Noteworthy observations included a significant infiltration 
of M1 macrophages and CD4 + T cells in mesothelioma, with genes SOAT1, MNDA, and ITGAM showing a positive 
correlation with the level of M1 macrophage infiltration. Furthermore, the differential expression analyses conducted 
on the GEO validation set and TCGA data confirmed the significance of the identified key genes.
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Introduction
Mesothelioma is an uncommon and treatment-resistant 
form of cancer that develops from serosal mesothelial 
cells. Its onset is frequently linked to exposure to asbes-
tos. With the implementation of bans on asbestos, it is 
anticipated that the rates of both incidence and mortality 
related to mesothelioma will reach their highest levels in 
the middle of the 21st century [1]. Additionally, mesothe-
lioma is characterized by the frequent loss or mutation of 
tumor suppressor genes such as cyclin dependent kinase 
inhibitor 2  A (CDKN2A), BRCA1 associated protein 1 
(BAP1), neurofibromin 2 (NF2), and cullin 1 (CUL1) 
[2]. Due to the difficulty of early diagnosis and effective 
treatment with traditional methods, mesothelioma is 
often detected at an advanced stage, with a median sur-
vival time of less than one year and a poor prognosis [3]. 
Hence, the identification of a set of reliable biomarkers 
for mesothelioma holds considerable importance in facil-
itating early detection and the implementation of clinical 
immunotherapy [4].

Expression quantitative trait loci (eQTL) are genomic 
regions statistically associated with variations in gene 
expression levels. By identifying how specific genetic 
variants influence gene activity, eQTLs link genetic varia-
tion to complex traits and diseases [5]. Mendelian ran-
domization (MR) is a method that uses genetic variation 
to determine the causal relationship between observed 
risk factors and disease outcomes. By leveraging genetic 
variation as a “natural experiment,” MR offers a more 
efficient way to test causality, effectively minimizing the 
influence of confounding factors [6, 7].

In this research, MR was employed to investigate the 
correlation between human whole-genome eQTL data 
and mesothelioma Genome-Wide Association Study 
(GWAS) data [8]. Additionally, mesothelioma transcrip-
tome data sourced from the Gene Expression Omnibus 
(GEO) database was integrated to pinpoint significant 
genes. Analyses conducted using Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), 
and Gene Set Enrichment Analysis (GSEA) methods 
provided insights into the pathophysiological implica-
tions of key genes in the development and progression of 
mesothelioma. Using the cell immune infiltration analy-
sis algorithm “CIBERSORT,” we constructed an immune 
infiltration model for mesothelioma and analyzed the 
correlation between the expression levels of key genes 

and immune infiltrating cells in mesothelioma. Ulti-
mately, we validated the differential expression of key 
genes using external data from the Cancer Genome Atlas 
(TCGA) and GEO database, enhancing the reliability of 
our findings. This research seeks to investigate potential 
molecular indicators of mesothelioma and assess their 
biological implications on the disease. The findings are 
intended to guide forthcoming studies on the mecha-
nisms of mesothelioma and the development of immuno-
therapeutic approaches (Fig. 1).

Materials and methods
Data collection and processing
Four human mesothelioma transcriptome datasets were 
obtained from the GEO database ( h t t p  s : /  / w w w  . n  c b i  . n l  
m . n i  h .  g o v / g e o /), including GSE2549 (45 mesothelioma 
samples and 9 normal samples) [9], GSE42977 (39 meso-
thelioma samples and 9 normal samples) [10], GSE29370 
(21 mesothelioma samples and 1 normal sample), and 
GSE51024 (55 mesothelioma samples and 41 normal 
samples) [11]. The GSE2549, GSE42977, and GSE29370 
datasets were integrated into a training set using the 
“limma” and “sva” packages in R software (version 4.3.1). 
Batch correction was conducted through principal com-
ponent analysis (PCA). The training dataset comprised 
105 samples of mesothelioma and 19 samples of normal 
mesothelial tissue. The GSE51024 dataset was utilized 
as a validation set for further confirmation (Table  1). 
Furthermore, transcriptome expression data from 86 
mesothelioma samples (TCGA-MESO.htseq_fpkm.
tsv) and 110 normal lung tissue samples (TCGA-LUAD.
htseq_fpkm.tsv and TCGA-LUSC.htseq_fpkm.tsv) were 
obtained from TCGA database ( h t t p  s : /  / p o r  t a  l . g  d c .  c a n c  e 
r  . g o v /) for external validation.

Differential gene expression analyses (DEGs)
In the R programming environment, the “limma” and 
“dplyr” packages were utilized to detect differentially 
expressed genes (DEGs) in mesothelioma samples com-
pared to normal controls, with statistical significance 
determined at a threshold of P < 0.05 and|Fold Change| 
< 0.585. Following this analysis, visual representations 
of the DEGs were generated using the “ggplot2” package 
and the “pheatmap” package to draw volcano plot and 
heatmap.

Conclusion This integrative eQTL and Mendelian randomization analysis provides evidence of a positive causal 
association between 14 key co-expressed genes and mesothelioma genetically. These disease critical genes are 
implicated in correlations with biological processes and infiltrated immune cells related to mesothelioma. Moreover, 
our study lays a theoretical foundation for further research into the mechanisms of mesothelioma and potential 
clinical applications.
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Mendelian randomization
Mendelian randomization data sources
In the R programming software, we employed Mendelian 
randomization utilizing GWAS data to investigate the 
causal relationship between genes in the human genome 
and mesothelioma. We downloaded the eQTL dataset 
from the OpenGWAS database  (   h t t p s : / / g w a s . m r c i e u . a c . 

u k /     ) to serve as the exposure GWAS data, encompassing 
19,942 genes. We acquired the finn-b-C3_MESO_THE-
LIOMA dataset from the FINNGEN database as the out-
come GWAS data for mesothelioma, comprising 218,792 
samples and 16,380,466 single nucleotide polymorphisms 
(SNPs). Both the exposure and outcome GWAS datasets 
for mesothelioma are sourced from European popula-
tions, ensuring uniformity and coherence of the data. 
The MR analysis conducted in this research utilized pub-
licly GWAS summary data, thus no additional ethical 
approval or informed consent was required.

Table 1 Microarray data details in this study
GEO accession Platform Mesothelioma Normal Data type
GSE2549 GPL96-57554 45 9 Training
GSE42977 GPL570-55999 39 9 Training
GSE29370 GPL6790-11603 21 1 Training
GSE51024 GPL570-55999 55 41 Testing

Fig. 1 Workflow diagram of this study
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Selection of instrumental variables (IVs)
The selection of instrumental variables (IVs) was con-
ducted by applying specific criteria. This involved uti-
lizing the “TwoSampleMR” package to assess the eQTL 
dataset of each gene and identifying SNPs that exhib-
ited a strong association with gene expression levels 
(P < 5e-08) [12]. Set the linkage disequilibrium condition 
to r² < 0.001, and a physical distance threshold of 10,000 
base pairs. To determine the presence of weak variable 
bias, it is recommended to compute the F-statistic of 
exposure, with instrumental variables having an F-value 
below 10 indicating the existence of such bias, which 
should be excluded [13].

Mendelian randomization analysis
Following the identification of IVs with effective causal 
detection capability, a two-sample MR analysis was 
conducted on the exposure and outcome using the 
“TwoSampleMR” and “VariantAnnotation” packages [14, 
15]. Five analytical methods were employed for the MR 
analysis: Inverse-variance weighted (IVW), MR-Egger, 
weighted median, weighted mode, and simple mode, 
with IVW being the primary method [16]. An assump-
tion in MR analysis is that the selected IVs can only affect 
the outcome through exposure. Therefore, to make the 
results between exposure and outcome more stable and 
reliable, testing for horizontal pleiotropy is necessary. In 
this research investigation, the MR-Egger intercept test 
was employed to evaluate horizontal pleiotropy, with a 
significance threshold set at P < 0.05 [17]. Deviation of the 
MR-Egger intercept from zero indicates the existence of 
horizontal pleiotropy, which raises concerns about the 
reliability of the results. Such deviation suggests that the 
SNPs under consideration are linked solely to the expo-
sure variable and are not influenced by other potential 
confounding factors. Additionally, due to variations in 
the selected population and experimental conditions, 
there may be heterogeneity among samples, potentially 
biasing the results. Therefore, Cochran’s Q test was used 
to detect heterogeneity (P > 0.05), and a leave-one-out 
analysis was performed to assess the consistency of the 
pleiotropy test results.

Screening and validation of key genes for 
mesothelioma
Based on the analysis results in MR, genes exhibit-
ing heterogeneity and pleiotropy were filtered out. The 
genes associated with a significance level of P < 0.05 
were divided into high-risk genes (OR > 1.0) and low-risk 
genes (OR < 1.0) based on the odds ratio (OR) value. The 
“VennDiagram” package was utilized to intersect the key 
associated genes with the upregulated and downregu-
lated genes of DEGs, and a Venn diagram was drawn. 
Using the “grid,” “readr,” and “forestploter” packages, we 

screened and plotted a forest plot of strongly associated 
genes based on the results of IVW and weighted median 
analyses. The “circlize” package was used to create a cir-
cular genomic map to display the chromosomal locations 
of key genes [18]. In the GSE51024 and TCGA datas-
ets, differential expression validation of key genes was 
performed using the “limma,” “reshape2,” and “ggpubr” 
packages.

Functional enrichment analysis of key genes
Using the “clusterProfiler,” “org.Hs.eg.db,” and “enrich-
plot” packages, we conducted GO functional and KEGG 
pathway enrichment analyses on key genes (P < 0.05, 
adjuested P < 0.05). This analysis encompassed the exami-
nation of cellular components (CC), molecular functions 
(MF), biological processes (BP), and signaling pathways 
associated with the identified key genes, followed by the 
creation of graphical representations in the form of bub-
ble charts. The GSEA analysis for each key gene’s high 
and low expression groups was conducted on the GEO 
training set expression matrix data by utilizing the “c2.
cp.kegg.Hs.symbols” dataset sourced from the MSigDB 
database.

Immune cell infiltration and immune correlation analysis
Immune cell infiltration levels in the control and experi-
mental groups of the GEO mesothelioma dataset were 
examined using the “LM22” file and the “CIBERSORT” 
package. Statistical significance was determined at a 
threshold of P < 0.05 with 1000 permutations. Visual-
ization of the results was achieved through the gen-
eration of boxplots and bar plots utilizing the “corrplot” 
and “ggplot2” packages. Furthermore, the relationship 
between mesothelioma immune infiltrating cells and key 
genes was investigated using the “linkET” package.

Statistical analysis
Quantitative data is represented using the mean ± stan-
dard deviation (SD). Kaplan-Meier method was used to 
plotted survival curve and log-rank test was performed. 
In consideration of other confounding factors and the 
impact of a suppressor effect, variables with a signifi-
cant value of P < 0.1 were subjected to a multivariate Cox 
proportional hazard analysis and further screened by 
forward selection method to evaluate their independent 
effect. The Cox proportional hazard regression models 
were used for multivariate analysis, and the relative risks 
of dying were expressed as adjusted OR and correspond-
ing 95% confidence intervals (CIs). Pearson’s analysis was 
used to analyze the correlation between disease critical 
genes and infiltrated immune cells. Statistical significance 
was determined by the independent paired t-test or one-
way analysis of variance with Dunnett’s post hoc analysis 
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using SPSS software (version 24.0; IBM Corp.). *P < 0.05, 
**P < 0.01, ***P < 0.001.

Results
DEGs identification
Batch correction was performed on the mesothelioma 
training set (Fig. 2A, B), with the training set details pro-
vided in Table 1. Differential gene expression analysis of 
the mesothelioma training set identified a total of 1608 
DEGs, including 791 upregulated and 817 downregulated 
genes (Supplementary Table S1), as displayed in the vol-
cano plot and heatmap (Fig. 2C, D).

Instrumental variables selection (IVs) and MR analysis
Following the elimination of linkage disequilibrium 
and weak IVs, a total of 26,152 SNPs were pinpointed 
as robust IVs strongly linked to genes (Supplementary 
Table S2). Using two-sample MR analysis to evaluate the 
effect of each SNP on mesothelioma, sensitivity analyses 
were conducted on SNPs with IVW P < 0.05 and without 

pleiotropy. Consequently, 182 genes associated with 
mesothelioma were identified (Supplementary Table 
S3), including 90 high-risk genes and 92 low-risk genes. 
By intersecting high-risk and low-risk genes identified 
from MR analysis with upregulated and downregulated 
DEGs, respectively, we identified 14 key co-expressed 
genes. The human chromosomal locations of these 14 
genes are shown in Fig. 3. Among them, the genes myelin 
protein zero like 1(MPZL1), sterol O-acyltransferase 1 
(SOAT1), transforming acidic coiled-coil containing pro-
tein 3 (TACC3), cytochrome b reductase 1 (CYBRD1) 
are associated with high risk of mesothelioma, while 
the genes transforming growth factor beta receptor 3 
(TGFBR3), NDRG family member 2 (NDRG2), endo-
thelial PAS domain protein 1 (EPAS1), carboxypeptidase 
A3 (CPA3), myeloid cell nuclear differentiation antigen 
(MNDA), protein kinase C delta (PRKCD), microtubule 
associated scaffold protein 1 (MTUS1), arachidonate 
15-lipoxygenase (ALOX15), leucine rich repeat neuro-
nal 3 (LRRN3), integrin subunit alpha M (ITGAM) are 

Fig. 2 Batch correction and variance analysis. (A) Before the batch correction. (B) After the batch correction. (C) Volcano plot of differential expression 
genes. (D) Heatmap of differential expression genes
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low-risk genes for mesothelioma (Fig.  4). The MR anal-
ysis of the causal relationship between the 14 key genes 
and mesothelioma revealed that the expression levels of 
MPZL1 (OR = 1.728; 95% CI: [1.143–2.612]; P = 0.009), 
SOAT1 (OR = 1.579; 95% CI: [1.050–2.374]; P = 0.028), 
TACC3 (OR = 1.964; 95% CI: [1.057–3.649]; P = 0.033), 
and CYBRD1 (OR = 1.771; 95% CI: [1.019–3.078]; 
P = 0.043) were positively correlated with mesothelioma. 
Conversely, the expression levels of TGFBR3 (OR = 0.252; 
95% CI: [0.070–0.912]; P = 0.036), NDRG2 (OR = 0.442; 
95% CI: [0.202–0.969]; P = 0.041), EPAS1 (OR = 0.207; 
95% CI: [0.058–0.741]; P = 0.016), CPA3 (OR = 0.431; 95% 
CI: [0.200–0.930]; P = 0.032), MNDA (OR = 0.477; 95% 
CI: [0.261–0.874]; P = 0.017), PRKCD (OR = 0.425; 95% 

CI: [0.205–0.880]; P = 0.021), MTUS1 (OR = 0.597; 95% 
CI: [0.360–0.992]; P = 0.046), ALOX15 (OR = 0.569; 95% 
CI: [0.351–0.924]; P = 0.022), LRRN3 (OR = 0.197; 95% CI: 
[0.058–0.670]; P = 0.009), and ITGAM (OR = 0.179; 95% 
CI: [0.043–0.751]; P = 0.019) were negatively correlated 
with mesothelioma.

Gene sensitivity analysis and differential expression 
verification
We conducted sensitivity analyses on 14 key mesothe-
lioma genes using MR-Egger regression and Cochran’s 
test. The results indicated no heterogeneity or pleiot-
ropy, confirming the reliability of our findings (Table 2). 
The funnel plot analysis indicated that no individual SNP 

Fig. 3 Screening and localization of critical genes. (A) Disease upregulated DEGs are intersected with genes with OR values greater than one in the MR 
results. (B) Disease downregulated DEGs are intersected with genes with OR values less than one in the MR results. (C) Position of disease-critical genes 
on human chromosomes
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affected the outcome, implying the absence of directional 
pleiotropy for individual SNP non-violation and bias esti-
mation. The leave-one-out analysis further confirmed 
the absence of horizontal pleiotropy, demonstrating the 
robustness and reliability of our analytical methods and 
results (Fig. 5, Supplementary Fig. 1,2). Furthermore, this 
research examined the variations in expression of 14 piv-
otal genes in mesothelioma by utilizing the validation set 
GSE51024 dataset and the TCGA database. The findings 
indicated notable distinctions in the levels of expression 
of these critical genes in mesothelioma, thereby validat-
ing their differential expression (Fig. 6).

Functional enrichment analysis of key genes
The analysis of GO for the identified key genes dem-
onstrated notable enrichment in various biological 
processes, including phagocytosis, superoxide anion 
generation, superoxide metabolism, and neutrophil acti-
vation. Furthermore, these genes exhibited enrichment 
in cellular components such as primary lysosomes, azu-
rophilic granules lumen, and cytoplasmic vesicles. Addi-
tionally, they were found to be enriched in molecular 
functions such as sulfur compound binding, amide bind-
ing, and serine/threonine kinase activity (Fig. 7A, supple-
mentary table S4). The KEGG analysis of the key genes 
revealed their enrichment in pathways such as ferropto-
sis, steroid biosynthesis, cholesterol metabolism, and the 

Fig. 4 Disease critical genes causally associated with mesothelioma

 



Page 8 of 16Li et al. Respiratory Research          (2025) 26:140 

renin-angiotensin system (Fig.  7B, supplementary table 
S5).

The GSEA enrichment analysis of key genes
To investigate the enrichment differences of key genes in 
high and low expression groups in mesothelioma, gene 
set enrichment analysis was conducted on the key genes. 
The results of GSEA showed that the antigen process-
ing and presentation signaling pathway had the highest 
enrichment level in the high expression group, followed 
by significant enrichment in the cytokine-cytokine 
receptor interaction and proteasome signaling path-
ways (Fig.  8). The key genes were most enriched in the 
cell cycle signaling pathway in the low expression group, 
followed by the proteasome, spliceosome and DNA rep-
lication signaling pathways (Fig.  9). These findings sug-
gest that alterations in the expression levels of key genes 
may have an impact on the occurrence and development 
of mesothelioma at the levels of protein synthesis and 
metabolism, protein interactions, and even the cell cycle.

Analysis of immune cell infiltration levels and their 
association with key genes in mesothelioma
Using the CIBERSORT algorithm to measure differences 
in immune cell infiltration between mesothelioma and 
normal mesothelial tissues, we obtained the immune cell 
infiltration profile of mesothelioma. Compared to the 
control group, the proportions of CD4 + naive T cells and 
M1 macrophages were significantly increased in meso-
thelioma, suggesting their potential impact on the disease 
(Fig.  10A.B). Additionally, to investigate the immuno-
logical characteristics of the key genes, we conducted a 
correlation analysis between the key genes and immune 
infiltrating cells (Fig. 10C). The results indicate that key 
genes are correlated with various immune infiltrating 
cells. M1 macrophages show significant positive cor-
relations with the expression levels of SOAT1, MNDA, 

and ITGAM, and negative correlations with ALOX15 
and LRRN3. Neutrophils exhibit positive correlations 
with the expression levels of MPZL1, CYBRD1, NDRG2, 
and MNDA, and negative correlations with TACC3, 
TGFBR3, and LRRN3. Additionally, the infiltration levels 
of T cells gamma delta significantly positively correlate 
with M1 macrophage infiltration levels. In contrast, the 
infiltration level of T cell follicular helper is significantly 
negatively correlated with T cell CD4 memory resting. 
The above research discovered that certain key genes 
interact with immune cells in mesothelioma. Specifically, 
the genes MNDA, TACC3, and CYBRD1 are significantly 
associated with infiltration of various immune cells.

Discussion
Mesothelioma is a rare, aggressive, and difficult-to-treat 
malignant tumor. Most patients are diagnosed at an 
advanced stage, with a median survival time of only 9-12 
months and a 5-year survival rate of less than 10%. Con-
sequently, mesothelioma ranks among the cancers with 
the poorest survival rates [19]. Asbestos is a significant 
causative factor in mesothelioma, inducing chromosomal 
and genetic damage in mammalian cells [20]. Mesothe-
lioma is characterized by extensive chromosomal rear-
rangements, gene mutations, and deletions, primarily 
involving human chromosomes 9 (9p21), 21q, and 3 
(3p21) [21]. Based on transcriptomic pathway analysis, 
mesothelioma cells exhibit alterations in cellular prolif-
eration, apoptosis, differentiation, and migration. These 
alterations in pathways can disturb the homeostasis of 
normal mesothelial cells [22].

In this study, we employed MR to analyze eQTL data 
of 19,942 genes to investigate their causal relationship 
with mesothelioma. The MR analysis revealed 182 genes 
associated with the condition, which were classified into 
high-risk and low-risk groups according to their OR val-
ues. By intersecting high-risk genes with upregulated 
DEGs, we identified four key high-risk genes associ-
ated with mesothelioma: MPZL1, SOAT1, TACC3, and 
CYBRD1. Conversely, intersecting low-risk genes with 
downregulated DEGs revealed ten key low-risk genes: 
LRRN3, TGFBR3, NDRG2, EPAS1, CPA3, MNDA, 
PRKCD, MTUS1, ALOX15, and ITGAM. This study rep-
resents the first application of MR analysis using eQTL 
data integrated with transcriptome data to identify piv-
otal risk genes in mesothelioma. Additionally, we con-
ducted functional enrichment analysis of these key genes 
and explored their immune correlations. This finding has 
the potential to offer new insights into investigating the 
mechanisms underlying mesothelioma and advancing the 
development of immunosuppressive therapy.

Although thoracoscopic biopsy can be used for early 
pathological diagnosis of mesothelioma, its application 
is limited due to significant harm to the patients [23]. To 

Table 2 Sensitivity analysis of mesothelioma critical genes
Gene PMR−Egger PMR−Egger. Q PIVW.Q

ALOX15 0.969 0.477 0.776
CPA3 0.536 0.261 0.311
CYBRD1 0.347 0.911 0.882
EPAS1 0.825 0.598 0.779
ITGAM 0.477 0.707 0.694
LRRN3 0.412 0.659 0.644
MNDA 0.729 0.213 0.342
MPZL1 0.588 0.668 0.724
MTUS1 0.663 0.930 0.839
NDRG2 0.703 0.686 0.776
PRKCD 0.753 0.457 0.606
SOAT1 0.549 0.937 0.929
TACC3 0.536 0.348 0.442
TGFBR3 0.357 0.852 0.631
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Fig. 5 Scatterplot of MR analysis of the association between mesothelioma critical genes and mesothelioma. (A) Scatterplot of MR analysis of ALOX15. 
(B) Scatterplot of MR analysis of CPA3. (C) Scatterplot of MR analysis of CYBRD1. (D) Scatterplot of MR analysis of EPAS1. (E) Scatterplot of MR analysis 
of ITGAM. (F) Scatterplot of MR analysis of LRRN3. (G) Scatterplot of MR analysis of MNDA. (H) Scatterplot of MR analysis of MPZL1. (I) Scatterplot of MR 
analysis of MTUS1. (J) Scatterplot of MR analysis of NDRG2. (K) Scatterplot of MR analysis of PRKCD. (L) Scatterplot of MR analysis of SOAT1. (M) Scatterplot 
of MR analysis of TACC3. (N) Scatterplot of MR analysis of TGFBR3
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date, as an environmental tumor associated with asbes-
tos exposure, mesothelioma currently lacks clinically 
validated serum biomarkers for early diagnosis [24]. In 
this study, we identified the MPZL1 gene as one of the 
core genes with a strong causal association with meso-
thelioma. The MPZL1 gene is located on human chro-
mosome 1q24.2 and contains 7 exons (Fig. 3C). MPZL1 
is a member of the immunoglobulin superfamily and is 

also known as the concanavalin receptor. As a single 
transmembrane protein, MPZL1’s intracellular domain 
contains two immunoreceptor tyrosine-based inhibitory 
motifs (ITIMs) that specifically bind to the SH2 domains 
of the tyrosine phosphatase SHP-2/PTPN11 [25, 26]. In 
hepatocellular carcinoma, MPZL1 recruits SHP-2 to 
phosphorylate Src kinase at Tyr426, subsequently lead-
ing to cortactin phosphorylation, which promotes the 

Fig. 6 Expression validation of disease critical genes in GEO testing group and TCGA database. (A) GEO testing group, (B) TCGA database. *P < 0.05, 
**P < 0.01, ***P < 0.001. TCGA: The Cancer Genome Atlas. GEO: Gene Expression Omnibus.
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migration of hepatocellular carcinoma cells [27]. Addi-
tionally, MPZL1 is highly expressed in various cancers, 
such as lung cancer, glioma, ovarian cancer, and gall-
bladder cancer [28–32]. MPZL1 promotes metastasis 
of non-small cell lung cancer (NSCLC) by upregulat-
ing COL11A1 and is associated with a poor prognosis 
in NSCLC [29]. MPZL1 can bind with β1 transforming 
growth factor to promote the development of lung ade-
nocarcinoma. The upregulation of MPZL1 in lung adeno-
carcinoma negatively regulates the infiltration of CD8 + T 
cells, which is associated with resistance to immunother-
apy [32]. However, in another study, MPZL1 was found 
to inhibit the proliferation, metastasis, invasion, and 
cancer stem cell characteristics of lung adenocarcinoma 
by activating the β-catenin/TCF-4 signaling pathway 
[33], highlighting the complex role of MPZL1 in tumor 
development.

Additionally, we discovered that the genes SOAT1, 
TACC3, and NDRG2 are linked to the prognosis of meso-
thelioma patients. Elevated levels of SOAT1 and TACC3 
were connected to shorter survival times (p < 0.05), while 
increased expression of NDRG2 was related to a more 
favorable prognosis (Supplementary Fig. 3). The SOAT1 
gene is located on human chromosome 1q25.2 (Fig. 3C) 
and encodes a protein that resides in the endoplasmic 
reticulum. As a member of the acyltransferase family, it 
is primarily expressed in adrenal tissues [34]. The SOAT1 
protein catalyzes the synthesis of fatty acid-cholesterol 
esters and promotes epithelial-mesenchymal transi-
tion (EMT) in hepatocellular carcinoma by regulating 
cholesterol metabolism [35]. Furthermore, the SOAT1 
protein can activate the PI3K/AKT signaling pathway 
to promote lung cancer invasiveness by downregulat-
ing intracellular free cholesterol levels [36]. According to 
Huang’s pan-cancer analysis, the SOAT1 gene exhibits 

increased expression in various cancers, such as lung 
adenocarcinoma, lung squamous cell carcinoma, breast 
cancer, hepatocellular carcinoma, and gastric cancer. It 
is associated with infiltration of different immune cells, 
including T cells, neutrophils, and macrophages, as well 
as co-expression with numerous immune-related genes. 
These findings align with our analysis of SOAT1 gene 
immunoreactivity [37]. TACC3 is a transforming acidic 
coiled-coil protein expressed in the spindle, centrosome, 
and nucleus, it is involved in maintaining the stability of 
cell mitosis [38, 39]. In breast cancer, the loss or muta-
tion of the p53 gene can upregulate TACC3 expression 
via FOXM1, leading to increased centrosome amplifi-
cation (CA) and enhanced invasiveness [40]. Similarly, 
p53 is a commonly mutated tumor suppressor gene in 
mesothelioma, and TACC3 could be a downstream gene 
involved in its pathogenesis [41]. Additionally, TACC3 
can promote the EMT of gastric cancer cells through the 
ERK/Akt/cyclin D1 signaling pathway, which is a criti-
cal process in the metastasis of mesothelioma [42, 43]. 
Similarly, literature reports that high TACC3 expres-
sion is associated with tumor immune cell infiltration 
and poor prognosis in lung adenocarcinoma patients, 
serving as an independent prognostic indicator [44, 45]. 
The NDRG2 gene, also known as SYLD, belongs to the 
hydrolase superfamily and is a cytoplasmic protein that 
promotes neurite growth. It is downregulated in various 
cancers, including breast and colorectal cancer, and is 
considered a negative indicator of tumor metastasis [46, 
47]. The expression of the NDRG2 gene is downregulated 
in human lung cancer tissues and is considered a favor-
able prognostic indicator for lung cancer [48]. Salviano-
lic acid B (Sal B) can induce oxidative stress and inhibit 
the growth and metastasis of lung cancer A549 cells 
through the NDRG2/PTEN signaling pathway [49]. In a 

Fig. 7 Functional enrichment analysis of critical genes. (A) GO enrichment analysis of mesothelioma critical genes. (B) KEGG enrichment analysis of 
mesothelioma critical genes
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Fig. 8 GSEA enrichment analysis of disease critical genes in mesothelioma. (A) GSEA enrichment results of ALOX15 high expression group. (B) GSEA 
enrichment results of CPA3 high expression group. (C) GSEA enrichment results of CYBRD1 high expression group. (D) GSEA enrichment results of EPAS1 
high expression group. (E) GSEA enrichment results of ITGAM high expression group. (F) GSEA enrichment results of LRRN3 high expression group. (G) 
GSEA enrichment results of MNDA high expression group. (H) GSEA enrichment results of MPZL1 high expression group. (I) GSEA enrichment results of 
MTUS1 high expression group. (J) GSEA enrichment results of NDRG2 high expression group. (K) GSEA enrichment results of PRKCD high expression 
group. (L) GSEA enrichment results of SOAT1 high expression group. (M) GSEA enrichment results of TACC3 high expression group. (N) GSEA enrichment 
results of TGFBR3 high expression group
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Fig. 9 GSEA enrichment analysis of disease critical genes in mesothelioma. (A) GSEA enrichment results of ALOX15 low expression group. (B) GSEA 
enrichment results of CPA3 low expression group. (C) GSEA enrichment results of CYBRD1 low expression group. (D) GSEA enrichment results of EPAS1 
low expression group. (E) GSEA enrichment results of ITGAM low expression group. (F) GSEA enrichment results of LRRN3 low expression group. (G) GSEA 
enrichment results of MNDA low expression group. (H) GSEA enrichment results of MPZL1 low expression group. (I) GSEA enrichment results of MTUS1 
low expression group. (J) GSEA enrichment results of NDRG2 low expression group. (K) GSEA enrichment results of PRKCD low expression group. (L) GSEA 
enrichment results of SOAT1 low expression group. (M) GSEA enrichment results of TACC3 low expression group. (N) GSEA enrichment results of TGFBR3 
low expression group
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separate study, overexpression NDRG2 protein via a sur-
vivin promoter suppressed the viability and invasiveness 
of lung cancer cells [50]. Additionally, NDRG2 can nega-
tively regulate the progression of small cell lung cancer 
through the PTEN-AKT-mTOR signaling pathway [51]. 

Currently, there are no research reports on the roles of 
SOAT1, TACC3, and NDRG2 in mesothelioma. Further 
investigation is needed to understand their functions in 
the progression of mesothelioma.

Fig. 10 Immune infiltration analyses, correlations between disease critical genes and infiltrating immune cell types. (A) Stacked histogram of the propor-
tions of immune infiltration cells between control and mesothelioma groups. (B) Box plot of the infiltration level of immune cells between control and 
mesothelioma groups. (C) Correlation analysis between disease critical genes and infiltrated immune cells. *P < 0.05, **P < 0.01
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However, our study has some unavoidable limitations. 
Firstly, mesothelioma is a rare malignant tumor, lead-
ing to a limited sample size across multiple databases, 
such as GEO and TCGA database. Moreover, due to the 
absence of normal mesothelial samples in TCGA data-
base, we utilized gene expression matrices from normal 
lung tissue for comparison and validation. Secondly, the 
GWAS data used for MR analysis were all derived from 
European populations, which may limit the generalizabil-
ity of the findings to other populations. Lastly, our study 
developed a predictive model consisting of 14 genes. To 
improve prediction accuracy, further analysis and screen-
ing are required to identify the most pertinent key genes, 
which should then be validated through experimental 
studies.
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