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Abstract 

Background Despite the importance of influenza vaccination in asthma patients, the efficacy of this vaccine 
in asthma has not been well elucidated. We aimed to compare the efficacy of an influenza vaccine of the asthmatic 
and control mice. We also evaluated the efficacy of AddaVax™ as an adjuvant candidate, which is equivalent 
to the MF59 influenza vaccine adjuvant in the elderly.

Method House dust mite extracts were intranasally injected into six-week-old female BALB/c mice to induce 
chronic allergic asthma. Antibody responses after split-inactivated A/Puerto Rico/8/34 H1N1 influenza vaccination 
with or without AddaVax™ adjuvant were measured using ELISA. Homologous viral protection was determined 
by measuring the survival rate, lung inflammation level, and lung virus titer after challenge with the human influenza 
virus strain A/Puerto Rico/8/1934 H1N1. Antigen-specific T cell responses were determined using flow cytometry.

Result The chronic asthma mice immunized with split-inactivated A/Puerto Rico/8/34 H1N1 influenza vaccine 
showed significant weight loss and higher lung viral load after homologous influenza infection than naïve vaccinated 
mice. Antigen-specific IgG, IgG1, and IgG2a production did not differ between the naïve and asthma mice. However, 
serum HI titer was lower in asthma-vaccinated mice after infection. The application of AddaVax™ to a vaccine for mice 
with asthma enhanced the efficacy of homologous antiviral protection but elicited eosinophil infiltration in the lungs 
after homologous influenza virus infection.

Conclusion The immune response after split inactivated A/PR8 vaccine differed between asthma and naïve 
mice, particularly in terms of antibody activity and T cell populations. This study enhances our understanding 
of how asthma status may influence the effectiveness of influenza vaccine and offers insights into the AddaVax™-
induced eosinophilic inflammation, guiding the development of virus vaccine strategies for both healthy individuals 
and asthma patients.
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Background
Asthma is a chronic airway inflammatory disease that 
affects 300 million people worldwide [1]. They have 
altered immune status and structural remodeling in the 
airway due to allergen-induced chronic inflammation [2, 
3]. Malfunction of the airway and exacerbation of asthma 
increase the risk of developing severe complications 
of influenza virus infection. During the 2009 influenza 
A H1N1pandemic (pH1N1), asthma was one of the 
most common underlying medical conditions among 
patients hospitalized for pH1N1 infections in the U.S. 
and worldwide [4]. However, despite the importance of 
influenza vaccination in patients with asthma, there has 
been limited research on the effectiveness of vaccines 
and the detailed T cell function against viral infection in 
asthma.

Allergic asthma is the most common type of 
asthma [5]. It exhibits pathological features of airway 
remodeling, including airway thickening, narrowing, 
edema, and mucous plugging [6, 7]. It is immunologically 
characterized by allergen-specific immunoglobulin E 
(IgE) production and eosinophil-dominant T-helper type 
2 (Th2)-biased inflammation [8–10]. In a previous study, 
we demonstrated an increased percentage of exhausted 
T cells after chronic allergen exposure, with decreased 
influenza virus clearance in an asthma mouse model 
[11]. T cell exhaustion refers to the gradual regression of 
T cell function and number owing to the persistence of 
low-grade chronic inflammation [12, 13]. These findings 
suggest that asthma can cause immune dysfunction 
owing to prolonged inflammation, which may raise 
concerns about the reduced response to vaccination.

Influenza virus is a highly mutable ssRNA virus, with 
new strains emerging every year. The success of annual 
influenza vaccine protection is highly dependent on the 
accuracy of the prediction of prevalent viruses during 
the upcoming flu season [14]. Therefore, a robust and 
effective vaccine that covers both homologous and 
heterologous strains is needed to reliably increase the 
success rate of influenza vaccines, which is even more 
important for people with asthma.

In this study, we evaluated whether asthma status 
affects protective vaccine responses with homologous 
and heterologous protection, using a house dust mite 
(HDM)-induced chronic asthma mouse model. HDM 
is an important indoor allergen in humans. The HDM 
mouse model closely resembles the features of human 
allergic asthma, such as airway hyper-responsiveness 
and remodeling, increased HDM-specific serum IgE 
levels, eosinophilic bronchitis, and increased levels of 
inflammatory cytokines, including interleukin (IL)-4 and 
IL-13. It is widely used in asthma research to investigate 
underlying mechanisms and explore treatment options 

[15–17]. Furthermore, we assessed the effects of 
AddaVax™, which is equivalent to the MF59 adjuvant, 
on the vaccine efficacy in asthmatic mice. MF59 is a 
safe and effective squalene oil-in-water vaccine adjuvant 
used as an influenza vaccine for immunocompromised 
individuals, such as the elderly, children, and pregnant 
women [18]. Our study contributes to the understanding 
of vaccine immunity in asthma, and offers insights into 
potential developmental strategies.

Method
Induction and confirmation of HDM induced asthma mice 
model
Six-week-old female BALB/c mice were purchased from 
Orient Bio and maintained at Jeju National University 
Animal Facility. The BALB/c mouse model of HDM-
induced chronic allergic asthma was used in this study 
[19]. 25  µg of house dust mite (Dermatophagoides 
pteronyssinus) extract (Stallergenes Greer) were 
resuspended in 35 µL of PBS and intranasally delivered 
to mice 5  days per week. Control or naïve groups were 
intranasally administered 35 µL of PBS without HDM 
extract. Mice were challenged up to six weeks. Asthma 
mice were sacrificed at 6 weeks after induction and their 
asthma features were evaluated. Experiment was done 
twice with qualitatively similar outcomes. As an indicator 
of the allergic response, the levels of immunoglobulin 
E (IgE) in the sera and the population of eosinophils in 
the lung and bronchoalveolar lavage fluid (BALF) were 
measured. The population of inflammatory cells in the 
lungs and BALF, levels of inflammatory cytokines and 
chemokines, and hematoxylin and eosin (H&E)-stained 
histological features of lung tissues were analyzed to 
evaluate lung inflammation. To investigate the properties 
of T cells in asthmatic mouse, the expression of the T cell 
exhaustion marker, thymocyte selection-associated HMG 
BOX (TOX) and programmed cell death receptor-1 
(PD-1) were determined using flow cytometry [20, 21]. 
HDM-specific IFN-γ and IL-4 cytokine-producing T cell 
percentages were measured after re-stimulation with the 
HDM extracts.

Split influenza vaccine and viruses
The human influenza virus strain A/Puerto Rico/8/1934 
H1N1 (A/PR8) was obtained from ATCC (VR-95™) and 
amplified in 9-day old embryonated chicken eggs. The 
virus was harvested from allantoic fluid. To produce the 
split vaccine, the allantoic fluid was inactivated with 1% 
neutralized buffered formalin overnight at 4 °C. The virus 
was purified by ultracentrifugation for 1 h at 30,000 rpm 
to obtain an inactivated virus. After incubation with 1% 
Triton X-100 for 2  h at 4  °C to fragment the virus, the 
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virus was transferred to a dialysis cassette and washed 
five times with PBS. The split A/PR8 virus vaccine and 
live A/PR8 virus were maintained at − 80 °C until use.

Vaccine immunization and virus challenge
Mice were divided into six groups (n = 12/group): naïve, 
naïve A/PR8 vaccine (naïve vac), naïve A/PR8 vaccine 
AddaVax™ adjuvant (naïve vac AddaVax™), asthma, 
asthma A/PR8 vaccine (asthma vac), and asthma A/PR8 
vaccine AddaVax™ adjuvant (asthma vac AddaVax™). 
Vaccine groups were intramuscularly vaccinated twice at 
4 and 6  weeks after asthma induction at a dose of 1  µg 
of split A/PR8 vaccine with or without AddaVax™. For 
immunization and infection, the mice were anesthetized 
using isoflurane. Sera were collected at 13 days after the 
prime vaccination and 14 days after the boost vaccination 
to measure vaccine-specific immunoglobulin levels and 
hemagglutination inhibitory titers.

Mice were sacrificed at three different time points 
(n = 4/group): (1) 2  weeks after the boost vaccination 
(2) 5  days after homologous infection (3) 10  days after 
homologous infection.

At 2  weeks after the boost vaccination, memory 
antibody production function of plasma cells (bone 
marrow) and memory B cells (spleen) were measured. At 
2 weeks after the boost vaccination, mice were challenged 
intranasally with live A/PR8 virus (H1N1, at a dose of 2.5 
 LD50) to determine homo protection. The  LD50 of the A/
PR8 viral stock was determined using preliminary mouse 
viral challenge experiments. 5  days after viral infection, 
mice were sacrificed to evaluate the pathogenesis of 
influenza. Viral titers were determined as the 50% 
egg infectious dose  (EID50)/mL. After monitoring the 
daily body weight change and survival for10 days after 
infection, mice were sacrificed and T cell populations 
in lung and spleen cells were measured. Experiment 
was done twice with qualitatively similar outcomes. The 
immunization and infection schedules are shown in 
Supplementary Fig. 1.

Sample collection and preparation
Sera were harvested via centrifugation of blood collected 
from the caudal vena cava. BALF samples were collected 
by delivering 1.2  mL PBS through the trachea using a 
25-gauge catheter. Lung tissues were obtained separately 
for histological and cellular/cytokine analysis. For 
histological analysis, the lung tissues were immediately 
fixed with 10% formalin. Lung tissues for cellular/
chemical analysis were mechanically mashed and filtered 
using a 100-µm cell strainer. Following centrifugation, 
the supernatants were stored at − 80  °C until cytokine 
enzyme-linked immunosorbent assay (ELISA). Following 
red blood cell lysis, the lung cell pellets were resuspended 

in 1  mL PBS containing 2% fetal bovine serum (FBS, 
FACS buffer) for flow cytometry. Lung extracts for virus 
titration were stored at − 80 °C until use.

Serum antigen‑specific ELISA
To measure A/PR8-specific IgG, IgG1, IgG2a, and HDM-
specific IgE levels in the serum, the ELISA plate was 
coated with inactivated PR8 vaccine or HDM protein 
(400  ng/well) before adding the serum. Serially diluted 
sera were added to antigen-coated ELISA plates after 
blocking. Horseradish peroxidase (HRP)-labeled anti-
mouse IgG, IgG1, IgG2a, and IgE secondary antibodies 
(Southern Biotech) were used to detect antigen-specific 
immunoglobulins in the serum. Tetramethylbenzidine 
solution was used as the substrate, and the reaction 
was stopped using sulfuric acid. Optical density was 
measured at 450 nm.

Plasma cell, memory B cell antigen‑specific 
immunoglobulin ELISA
The A/PR8 coated plates were blocked with 10% fetal 
bovine serum containing RPMI 1640 medium for 1  h 
at room temperature to measure the memory B cell 
response to the influenza virus. Bone marrow and spleen 
cells were collected at 7  days post-infection, seeded at 
a density of 2 ×  106 cells/mL onto the plates, and then 
incubated at 37 °C for 1 or 5 days. Anti-mouse IgG, IgG1, 
and IgG2a antibodies were used to detect influenza-
specific antibodies secreted by the antibody-producing B 
cells.

Hemagglutination inhibitory (HI) assay
Sera samples were incubated overnight at 37  °C with 
RDE II (DENKA SHEIKEN CO. LTD.) at a 1:3 ratio. 
The samples were inactivated at 56  °C for 30  min and 
stored at 4 °C until further use. The samples were initially 
diluted tenfold, followed by twofold serial dilutions of 
up to 1280-fold. Serum samples (25 µL) were incubated 
with 25 µL of 3 hemagglutination units of A/PR8 virus 
for 30  min at room temperature. Then, 50 µL of 0.5% 
chicken red blood cells (RBC) was added to each well and 
incubated for 30 min at room temperature. The endpoint 
dilution of HI activity in Chicken RBCs was determined.

Cytokine and chemokine ELISA
Cytokines in the BALF and lung extracts were measured 
using a tumor necrosis factor (TNF)-α, IL-6, IL-12 p40 
Mouse Uncoated ELISA Kit (Invitrogen), and interferon 
(IFN)-γ, IL-4, granzyme B DuoSet ELISA kit (R&D 
Systems) according to the manufacturer’s protocols.
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Flow cytometry
For cell phenotype staining, the Fc receptors of the 
harvested cells were blocked using anti-CD16/32 
(clone 2.4G2) antibody after washing with FACS buffer. 
Each antibody cocktail was then added to the cells 
and incubated for 30  min at room temperature in the 
dark. Intracellular cytokine staining for TOX, IL-4, and 
IFN-γ was performed using a BD Cytofix/Cytoperm kit. 
To measure IL-4 and IFN-γ cytokine-producing T cells, 
cells were incubated for 4  h with 5  µg/mL of antigen 
(HDM or split A/PR8) after treatment with Golgi-stop. 

Data were acquired using a BD LSR Fortessa at the Bio-
Health Materials Core Facility, Jeju National University, 
and analyzed using FlowJo software. Table  1 lists the 
antibodies used in this study and the gating strategy is 
shown in Supplementary Fig. 2.

Histopathological examination of mice lung
Portions of the left lower lobe lung tissue were fixed 
in 10% neutralized buffered formalin, processed, and 
embedded in paraffin. Sections were cut in 4  μm of 
thickness and stained with H&E. Lung Sections (15–20 
photos per group) were scored from 0–4 blindly by three 
researchers for bronchial lesions and alveolar lesions 
using an adapted histological scoring system (Table  2) 
that was originally described by Dubin et  al. [22]. To 
determine eosinophil infiltration in the lungs, modified 
Congo Red staining was performed [23].

Lung virus titration
The lung extracts from the influenza-infected mice 
groups were serially diluted in PBS from  10−2 to  10−12, 
and 300 μL of each dilution was inoculated into 9-day 
old embryonated chicken eggs (three eggs per dilution). 
After incubation for three days, 50 μL of allantoic fluid 
was collected and added to a 96 well U-bottom plate. 50 
µL of 0.5% RBC was added to each well and incubated 
for 30  min at room temperature The 50% endpoint for 
hemagglutinin activity in chicken RBC was determined 
according to the method of Reed and Muench [24].

Statistical analysis
All results are presented as mean ± standard error of the 
mean, and statistical significance was analyzed using 
GraphPad Prism software 10.09 (GraphPad Software 
Inc.). Significant differences between two groups were 

Table 1 List of antibodies used in flow cytometry analysis

Antibody for flowcytometry

Inflammatory cell anti-mouse CD45 (clone 30-F11)
CD11b (clone M1/70)
CD11c (clone N418)
F4/80 (clone BM8)
Ly6c (clone AL-21)
MHC class II (clone I-A/I-E)
CD170 (clone S17007L)
Live/dead aqua (L/D)

Memory T cell anti-mouse CD45 (clone 30-F11)
CD3 (clone 17A2)
CD4 (clone RM4.5)
CD8a (clone 53–6.7)
CD44 (clone IM7)
CD62L (Clone MEL-14)
Live/dead aqua (L/D)

Exhausted T cell anti-mouse CD45 (clone 30-F11)
CD3 (clone 17A2)
CD4 (clone RM4.5)
CD8a (clone 53–6.7)
PD-1 (Clone 29F.1A12)
TOX (Clone TXRX10)

Intracellular cytokine anti-mouse CD45 (clone 30-F11)
CD3 (clone 17A2)
CD4 (clone RM4.5)
CD8a (clone 53–6.7)
IL-4 (Clone 11B11)
IFN- γ (Clone XMG1.2)

Table 2 Lung inflammation scoring of mice after influenza infection

Score Bronchiolar Infiltrate Alveolar
involvement

Intraluminal infiltrate Peri bronchial Infiltrate

0 None None None

1 ≦25% of visualized lumens; inflammatory cell exudates and pre-
dominate mononuclear

Infiltrate ≦4 cells thick Slight increase of cellularity

2 25–50% of visualized lumens; inflammatory cell exudates 
and mixed mono- and polymorphonuclear

Infiltrate 5–10 cells thick Moderate increase of cellularity

3 50–75% of visualized lumens; inflammatory cell exudates 
and predominately polymorphonuclear

25–50% of visualized lumens Significant increase of cellularity, thickening; 
obliteration of < 50% of visualized alveolar 
space

4 Diffuse; inflammatory cell exudates and predominately 
polymorphonuclear

Diffuse Obliteration of > 50% of the alveolar space
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analyzed using unpaired t-test. One-way ANOVA or two-
way ANOVA was used for the comparison of multiple 
groups. Statistical significance was set at p < 0.05.

Result
A 6‑week HDM‑induced asthma mice model showed 
typical features of chronic allergic asthma
To establish a HDM mouse model, mice were sensitized 
and challenged intranasally 5  days per week for up 
to 6  weeks with 25  µg of HDM extract suspended in 
35  µl of PBS. Asthma mice successfully represented 
the features of allergic asthma. They also showed 
increased serum levels of HDM-specific IgE, TNF-α, 
IL-12p40, and IL-4 (Fig.  1A–D) in the lung, as well as 
representative broncho-pathological characteristics, such 
as inflammatory cell infiltration around the bronchus 
and blood vessels, and mucous plugging. They also 
exhibited structural changes such as airway thickening, 
smooth muscle thickening, and increased alveolar 
cellularity in lung histology (Fig.  1E, F). The population 
of infiltrated inflammatory cells was determined using 
flow cytometry. A significant increase in the number 
of eosinophils, monocytes, neutrophils, and dendritic 
cells (DC) was observed in the lungs and BALF of 
asthma mice. The number of eosinophils, monocytes, 
neutrophils, and DC in the lungs and BALF increased in 
asthmatic mice (Fig.  1G, H). Among the inflammatory 
cells, the population of eosinophils showed the largest 
increase in the lungs (Fig.  1I). In addition, we analyzed 
the population of T cell subsets in asthma mice. They 
showed an increase in the population of effector memory 
 CD4+ T cells (Fig.  2A, B, C) in the lungs. However, the 
percentages of IFN-γ or IL-4 cytokine-producing  CD4+ 
T cells in the lungs after HDM restimulation were lower 
than those in the control (Fig.  2A, D, E). Instead, the 
percentages of exhausted  CD4+ and  CD8+ T cells in 
the lungs were significantly increased in asthma mice 
(Fig. 2A, F, G).

Asthma mice exhibited lower serum HI titer compared 
to naïve mice after split A/PR8 vaccination, and AddaVax™ 
adjuvant enhanced antibody response and HI titer 
against A/PR8 in both naïve and asthma mice
To investigate vaccine efficacy in asthma, mice were 
immunized twice with a split A/PR8 vaccine, with or 
without AddaVax™ supplementation. The level of sera 
IgG, and IgG1 were increased after prime and boost 
vaccination in both naive and asthma mice. There was 
no significant difference in the antibody levels between 
the naive and asthma vac groups (Fig. 3A–F). AddaVax™ 
adjuvant effectively enhanced the levels of IgG and 
IgG1, but not IgG2a (Fig.  3A–F). The level of IgG1 was 
slightly lower in the asthma vac AddaVax™ group than 
in the naive vac AddaVax™ group after boost vaccination 
(Fig. 3A, B).

We also assessed the antibody-producing capacity 
of the plasma cells in the bone marrow and memory 
B cells in the spleen. Split A/PR8 vaccine alone did 
not significantly enhance antibody-producing cell 
responses after vaccination. AddaVax™ supplementation 
significantly increased IgG production in the bone 
marrow (Fig.  3G), and spleen cells (Fig.  3H). There was 
no difference in the levels between naïve and asthma 
mice.

Although the naïve and asthma vac groups exhibited 
similar levels of A/PR8-specific serum IgG and IgG1, they 
showed large differences in the serum HI titer. The naïve 
and asthma vac AddaVax™ groups showed the highest 
dilution titer, followed by the naïve vac group, whereas 
the asthma vac group remained undetectable (Fig. 3I).

Asthma mice showed reduced vaccine protection 
against homologous A/PR8 virus challenge, which 
was effectively compensated for using the AddaVax™ 
adjuvant
To evaluate the efficacy of the split A/PR8 vaccine and 
AddaVax™ adjuvanted vaccine in asthma mice, mice were 
challenged with 2.5  LD50 of A/PR8 H1N1 at 2 weeks after 
boost vaccination. Naïve mice showed good protection 
after vaccination with or without AddaVax™, with 
no weight loss (Fig.  4A), 100% survival (Fig.  4B), and 
significantly reduced the viral titer in the lungs at 5 days 

(See figure on next page.)
Fig. 1 Evaluation of asthma features of HDM-induced asthma mouse model. Sera and lung samples were collected at 6 weeks post HDM 
sensitization. A HDM-specific IgE levels in the sera were measured using ELISA. B–D Inflammatory cytokine levels in the lungs were measured 
by ELISA. E, F Lung tissues were stained with H&E, and representative histological analyses of each group at magnification × 200 and × 400 are 
shown. G, H Frequencies of inflammatory cells in lungs and BALF were measured using flowcytometry. I Percentages of inflammatory cells in lungs 
were shown as parts to whole. Data were shown in mean ± SEM. For statistical analysis, two-way ANOVA and unpaired t test was performed. 
*p < 0.05; **p < 0.01; ***p < 0.001 ****p < 0.0001 between the indicated groups (n = 4/group)
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Fig. 1 (See legend on previous page.)
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post-infection compared to that in the naïve infection 
(inf.) group (Fig.  4C). The asthma mice also showed 
better protection after A/PR8 split vaccination with 
100% survival (Fig.  4B) and reduced viral titer (Fig.  4C) 
in the lungs than the asthma infected mice. However, 
the asthma vac inf. group showed significant weight 
loss (Fig.  4A) and higher virus titer (Fig.  4C) compared 
with the naïve vac inf. groups, whereas the asthma vac 
AddaVax™ inf. group was fully protected, with no weight 
loss (Fig. 4A), and a low viral titer, which was even lower 
than that of the naïve vac AddaVax™ inf. group (Fig. 4C).

AddaVax™ augmented eosinophil infiltration 
after homologous virus challenge at the site of infection 
and increased A/PR8 specific IgE level in lung of asthma 
mice
To further determine the protective effect of the 
vaccine against A/PR8 virus challenge in asthma 
mice, inflammatory cytokine levels, inflammatory cell 
populations in the airway, and histopathology of the 
lung tissues were determined at 5 days post-infection. In 
lung, naïve vac inf. and vac AddaVax™ inf. groups showed 
decreased levels of IL-6 and granzyme B compared to 

those in the naïve inf group. Asthma inf. group showed 
higher level of TNF-α, IL-6, and IFN-γ than in the naïve 
inf. group. Asthma vac AddaVax™ inf. group showed 
decreased levels of TNF-α, IL-6, IFN-γ, and granzyme 
B compared with the in those asthma group. Asthma 
vac inf. group showed decreased level of TNF-α, and 
IL-6. IL-4 level was higher in the asthma group than in 
the control group. In addition, it showed higher levels 
of IL-6, IFN-γ, IL-4, and granzyme B than asthma vac 
AddaVax™ inf. group (Fig.  5A). In BALF, the levels of 
TNF-α, IL-6, and IFN-γ among the groups exhibited a 
pattern consistent with that observed in the lungs. The 
level of IL-4 increased in naïve vac AddaVax™ inf. group 
compared to the naïve inf. and asthma vac AddaVax™ inf. 
group. Asthma vac inf. group showed the highest levels 
of granzyme B among the groups (Fig. 5B).

The percentage of eosinophils, neutrophils, monocytes, 
alveolar macrophages, and dendritic cells in the lungs 
(Fig.  5C), and BALF (Fig.  5D) was measured using flow 
cytometry. Both the naïve vac inf. and the naive vac 
AddaVax™ inf. groups exhibited significantly decreased 
percentages of monocytes and neutrophils in the lungs 
compared to those in the naive infection group (Fig. 5C). 

Fig. 2 Evaluation of HDM-specific T cells and exhausted T cell populations in asthmatic mouse lungs. Lung samples were collected at 6 weeks 
post HDM sensitization. Golgi-stop was treated to cells and cells were re-stimulated for 4 h at 37 °C with HDM extract (5 µg/mL). T cell populations 
in the lungs were measured using flow cytometry. A Gating strategy and representative data were shown. B–G Frequencies of each T cell 
population were shown. Data were shown in mean ± SEM. For statistical analysis, unpaired t test was performed. *p < 0.05; **p < 0.01; ***p < 0.001 
****p < 0.0001 between the indicated groups (n = 4/group)
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In BALF, naïve vac inf. group exhibited high levels of 
monocytes and neutrophils, whereas the naïve vac 
AddaVax™ inf. group exhibited a significant decrease in 
these cell populations (Fig. 5D). In asthma mice, however, 
the vac inf. group did not show a significant decrease in 
the populations of monocytes and neutrophils in the lung 
and BALF, whereas the vac AddaVax™ inf. group showed 
a substantial decrease in monocyte populations (Fig. 5C, 
D). The tendency of inflammatory cell populations was 
similar in the cell number graphs (Sup. 3).

We also evaluated the histopathology of lung tissues 
using H&E staining. Representative photos were selected 
based on the mean inflammation score (Fig.  6A, B). 
The lungs of the naïve inf. group showed moderate 

infiltration of inflammatory cells around the bronchioles 
and blood vessels, with some debris of cells inside the 
lumen (bronchiole score, 1.8). Cellularity in the alveolar 
space moderately increased (alveolar score, 2.1). The 
severity of inflammation in naïve vac inf. group was 
considerably lower than that of the naïve inf. group 
(bronchiole score 0.5, alveolar score 0.9). The severity 
of inflammation in naïve vac AddaVax™ inf. group was 
increased in both bronchiole and alveolar, showing 
similar score (bronchiole score 1.8, alveolar score 2.7) to 
naïve inf. group. The asthma inf. group showed severe 
inflammatory cell infiltration in the bronchiole region 
and narrowing of the lumen by mucus and cell debris 
(bronchiole score, 2.6). They also had significantly 

Fig. 3 A/PR8-specific antibody production after prime and boost vaccination. Serum samples were collected at 2 weeks after prime and boost 
vaccination. Sera Ig G, G1, G2a levels were measured using ELISA (A–F). Bone marrow (BM) cells and spleen cells were collected at 2 weeks 
after boost vaccination and cultured in A/PR8 pre-coated 96 well cell-culture plate for 1 day (BM) and 7 days (spleen). Memory Ig G response 
in the (G) bone marrow and (H) spleen were measured using ELISA. 2 weeks post boost vaccination serum samples were initially diluted tenfold, 
followed by twofold serial dilutions of up to 1280-fold and incubated with 3 HA unit of A/PR8 virus. I The endpoint dilution of HI activity in Chicken 
RBCs was determined. Data were shown in mean ± SEM. For statistical analysis, two-way ANOVA (A–F) and one-way ANOVA (G–I) were performed. 
****p < 0.0001 between the indicated groups (n = 4/group)
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increased alveolar cellularity and obliteration of the 
alveolar space (alveolar score 3.2). Inflammation scores of 
the asthma vac inf. group (bronchiole score 2.4, alveolar 
score 2.7) were less severe than those of the asthma 
infection group, but showed higher bronchiole score than 
asthma group. Asthma vac AddaVax™ inf. group showed 
lower inflammation scores (bronchiole score 2, alveolar 
score 2.2) than asthma inf. group, similar score to asthma 
group.

Increased eosinophil infiltration was confirmed by lung 
histology staining using modified Congo Red staining. 
An elevated number of eosinophils (red arrowhead) was 
detected in the peri-bronchiole/peri-vascular region 
of the lungs in the naïve and asthma vac AddaVax™ inf. 
groups compared to the other groups (Fig. 6C). Notably 
the histopathological features of naïve vac AddaVax™ 
inf. group were similar to allergic inflammation in lung, 
showing eosinophil infiltration and airway thickening.

We examined A/PR8-specific IgE levels in BALF and 
lung to determine if the increased eosinophil level is 
related with allergic response against A/PR8 virus. A/
PR8-specific IgE level in BALF were elevated in asthma 
groups but were only statistically significant in the 

asthma inf. group. A/PR8-specific IgE level in lung were 
significantly increased in asthma vac AddaVax™ inf. 
group (Fig. 6D).

Asthma groups exhibited higher percentage of DN cell 
populations compare to same treated condition naïve 
groups after infection
We assessed T cell populations in the lung and spleen at 
10  days post infection. Following vaccination, we noted 
an increase in the percentage of  CD4+ T cell populations 
in  CD3+ cell population, whereas the percentage of CD4, 
CD8 double negative (DN) cell populations decreased in 
the lung and spleen of naïve and asthma mice (Fig.  7A, 
B). Also, the percentage of  CD4+ T cell population was 
higher in naïve inf. group compare to the asthma inf. 
group. In lung, the percentage of  CD8+ T cell populations 
was higher in naïve vac inf. group compare to asthma inf. 
group. The percentage of DN cell populations was higher 
in asthma groups compare to same treated condition 
naïve groups (Fig. 7A). In spleen, the percentage of  CD4+ 
T cell population was lower and the percentage of DN 
cell populations was higher in asthma groups compare to 
same treated condition naïve groups. The percentage of 

Fig. 4 Determination of homologous protective efficacy of the A/PR8 split vaccine with or without AddaVax™ in naïve and asthma mice. A Body 
weight changes were monitored for 10 days after infection with A/PR8 influenza virus (2.5  LD50). B Survival rate of the asthma mice after infection 
with A/PR8 virus. C Lungs were collected at day 5 post infection and viral titers were determined in  EID50/mL. All data were shown in mean ± SEM. 
For statistical analysis, two-way ANOVA was performed for body weight change. ****p < 0.0001 between asthma vaccine group and naïve vaccine 
group. One-way ANOVA was performed for virus titer. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 between the indicated groups (n = 4/group)
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Fig. 5 Inflammatory cytokine levels and cell infiltration in the lungs and BALF after A/PR8 challenge. Lung samples were collected at 5 days 
post infection. Inflammatory cytokine levels in the lung (A) and BALF (B) were measured by ELISA. Inflammatory cell populations in the lung (C) 
and BALF (D) were measured by Flow cytometry. All data were shown in mean ± SEM. For statistical analysis, one-way ANOVA was performed. 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 between the indicated groups (n = 4/group)
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 CD8+ T cell populations was higher in asthma inf. group 
than naïve inf. group and asthma vac inf. group compared 
to the naïve vac inf. group (Fig. 7B).

Discussion
Asthma is a significant disease affecting 300 million 
people worldwide and increases the risk of hospitalization 
for the influenza virus [25]. The danger stems not only 
from lung malfunction and asthma exacerbation [26, 
27] but also from the potential alteration in immunity 
due to chronic inflammation [28]. Our previous study 
demonstrated T cell exhaustion in asthma condition 
[11], and Huilei Zhang et al. found effector memory CD8 
T cell dysfunction in asthma conditions [29], raising 
concerns about the efficacy of influenza vaccines.

Previous studies have investigated the impact of asthma 
on vaccine efficacy using a mouse model; however, this 
has been controversial [30–32]. Here, we demonstrated a 
clear reduction in the protective efficacy of split A/PR8 
vaccination against homologous influenza infections in 
the asthma condition, whereas the vaccination provided 
complete protection in normal mice at the same dosage. 
6-week HDM exposure increased the Th 2 response and 
T cell exhaustion.

The viral challenge dose of 2.5  LD50 in this study was 
effectively mitigated by high antibody levels and HI 
activity in the naïve vac AddaVax™ group, as evidenced by 
reduced recruitment of monocytes and neutrophils and 
low levels of IFN-γ and granzyme B. The naïve vac group 
exhibited lower antibody levels and HI activity compared 
to the naïve vac AddaVax™ group. Consequently, 
activation of cellular immunity appeared necessary 
for viral clearance, as indicated by the recruitment of 
monocytes and neutrophils in BALF. The naïve group 
was unable to withstand the 2.5  LD50 viral challenge.

The efficacy of vaccine in asthma mice were similar 
to that in naïve mice when considering survival rates. 
However, we could find differences in some details 
between asthma and naïve mice after vaccination. First, 
serum HI assay showed that HI activity of asthma vac 
group was substantially lower than naïve vac group, 
although total serum IgG and IgG1 level was not differ 
between groups. This is an important finding which 

might contribute to increased body weight loss and 
viral titer after challenge in asthma vac inf. group. One 
possibility is a reduction in antibody affinity, which still 
bind to influenza antigens but have weaker neutralizing 
activity. If the chronic HDM antigen exposure depleted 
the naïve B cell pool in secondary lymphoid organs 
in asthma mouse, it may lead to the reduction of 
competition among B cells. This diminished competition 
can impair the selection of high-affinity memory B 
cells and plasma cells, ultimately lowering the average 
antibody affinity. Another possible explanation is a 
shift in the antibody response away from HA toward 
internal viral proteins such as nucleoprotein (NP) or 
matrix protein 1 (M1) by asthma induced inflammation. 
However, since split-virus vaccines primarily contain 
HA and NA, with only minimal amounts of NP and 
M1 (as most internal components and egg proteins 
are removed during the chemical processing) [33], it 
is unlikely that asthma-induced inflammation would 
significantly redirect the antibody response toward 
these internal proteins, although it remains a possibility 
worth considering. Lastly, it’s another low possible 
explanation, that the presence of an expanded population 
of HDM-induced memory B cells in asthma mice may 
contribute to the production of antibodies targeting 
non-neutralizing regions of HA or NA, such as glycan 
structures rather than receptor-binding sites, which 
shares a common structure with HDM antigens. This 
could reduce the proportion of antibodies capable of 
effectively blocking viral entry, thereby lowering HI 
titers.. Second, in both lung and spleen, the percentages 
of DN cell populations were higher in asthma groups 
compare to same treated condition naïve groups. Possible 
cell types in this population are double-negative NKT 
cells and double-negative T cells (DNT) [34, 35]. DNT 
cells can have memory functions and can expand and 
activate against pathogens. It is a minor subset of T 
cells but is associated with multiple disease conditions 
[36–40]. This study had limitations in distinguishing 
these cell types. Nevertheless, this result suggests that 
asthma mice have alternative immune cell populations 
when responding to viral challenges. Further research 
investigating the actions of underrepresented immune 
cell subsets in asthma mice model, including mast cells, 

Fig. 6 Lung histopathological analysis and A/PR8-specific Ig E level in BALF and lung after A/PR8 challenge. The representative histology pictures 
of lung tissues at magnification × 200 (A) and the inflammation score in lung (B) after A/PR8 influenza virus infection. Lung tissues were collected 
at 5 days post infection and stained with H&E. The lung inflammation score was blindly quantified (15–20 pictures/group) between 0–4. C 
Representative histological photos of lung tissues at magnification of × 400 and × 1000, stained with Congo red. D A/PR8-specific IgE levels in BALF 
and lungs were measured by ELISA. The lung inflammation score graph and IgE level data were shown in the mean ± SEM. For statistical analysis, 
one-way ANOVA was performed. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 between the indicated groups

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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NK cells, NK T cells, and basophils, may enhance the 
understanding the action of asthma immunity against 
virus and reproducibility of the model.

Despite asthma’s pathological feature of a Th 2 skewed 
immune response, upon exposure to a lethal dose of 
influenza virus infection, subjects typically elicit an anti-
viral response characterized by elevated levels of IFN-γ 
and granzyme B. IFN-γ is primarily secreted by Th-1 
 CD4+ T cells [41, 42], cytotoxic  CD8+ T cell [43], NK 
cell [44], and NKT cell [45, 46]. Granzyme B is mainly 
secreted by NK cell [47, 48], NKT cell [49], cytotoxic 
CD8 T cell [50, 51] and also mast cell [52]. Furthermore, 
inflammation was associated with the activation of 
monocytes and neutrophils rather than eosinophils. 
Study of Sujin An et  al. showed that at the initial stage 
of infection asthma mice can control viral replication 
via rapid induction of type III IFN. However, asthma 
mice become vulnerable to infection after 7  days and 
intranasal administration of type III IFNs increased the 
protection [53]. This suggests that asthma mice can also 
respond normally to the virus, but there are limitations in 
their immune ability to maintain IFN-mediated immune 
activation for antiviral responses and consequently 
exhibit increased susceptibility.

Therefore, the elevated eosinophil levels observed 
in the vac AddaVax™ groups can be attributed solely 
to the vaccine’s effects. In both naive and asthma mice, 
AddaVax™ adjuvanted vaccination enhanced serum 
A/PR8-specific antibody level and HI activity and 
significantly reduce lung viral titer. However, both of 
groups exhibited significant eosinophil recruitment in 
the lung and BALF after infection. It has been reported 
that split inactivated influenza vaccines can increase 
eosinophil levels in lung in mice following viral challenge 
[54]. Furthermore, the addition of AddaVax™ has been 
observed to enhance this effect [55].

In this study, naïve vac AddaVax™ inf. group showed 
acute eosinophilic pneumonia and increased IL-4 level in 
BALF. It did not show the increase in the level of A/PR8-
specific IgE in the lung or BALF. Asthma vac AddaVax™ 
group displayed an elevation in eosinophil levels but not 

Fig. 7 T cell populations in the lung and spleen at 10 days 
after infection after A/PR8 re-stimulation. Lung and spleen cells were 
collected at 10 days after infection. Cells were incubated for 4 h 
at 37 °C with A/PR8 peptide (5 µg/mL). T cell populations in the lung 
(A‑D) and spleen (E–H) were measured by flow cytometry. All data 
were shown in mean ± SEM. For statistical analysis, one-way ANOVA 
was performed. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 
between the indicated groups (n = 4/group)

◂
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in cytokine levels or observable asthma exacerbation 
in lung. Allergen sensitivity may be diminished in the 
chronic asthma stage compared to the acute stage [56, 
57]. Elevated A/PR8-specific IgE levels in the lung 
suggest the development of an allergic response to the A/
PR8 virus.

An allergic response to viruses is undesirable and 
has the potential to develop into a serious disease with 
repeated influenza vaccination or virus infection. 
Although there are studies about the anti-bacterial and 
anti-viral actions of eosinophil [58–60], still it is strongly 
associated with the exacerbation of allergic inflammation 
[61], and recent reports have highlighted an increase in 
cases of eosinophilia following COVID-19 vaccination 
[62–64]. Asthma mice also present an unknown risk, 
as elevated eosinophil levels did not exacerbate lung 
inflammation but may systemically affect inflammation in 
other organs. Therefore, more active vaccine research and 
development is necessary, considering not only antibody 
levels and protection outcomes but also unidentified 
risk factors and long-term effects. Furthermore, existing 
guidelines for influenza vaccination do not recommend 
the use of live attenuated vaccines or nasal spray 
formulations for individuals with asthma, due to the 
potential risk of triggering an asthma attack. Developing 
a vaccine for asthma patients that enhances cellular 
response without exacerbating underlying disease poses 
a novel challenge, particularly in light of the potential 
for severe seasonal and pandemic respiratory viruses to 
emerge.

This study’s results are limited to a particular mouse 
model, with the evaluation focusing on selected cell 
types only. Also, it has a limitation in fully elucidating 
the underlying mechanism of vaccine efficacy in 
asthma condition and identifying the contribution of 
each factor. To elucidate the mechanisms of asthma 
immunity against influenza vaccine and virus, further 
testing, such as antibody affinity assays and monoclonal 
antibody measurements, would be needed to confirm the 
mechanism of reduced neutralizing antibody production 
in split vaccinated asthma mouse. Comprehensive 
research is required regarding the function of other 
immune cells under diverse conditions with longitudinal 
monitoring. Moreover, evaluating various other vaccine 
formulations will be crucial for advancing vaccine 
development tailored to asthma patients. Further studies 
in human subjects are also necessary.
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