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Abstract 

Background  The role of eosinophils in COPD and their utility as biomarkers for cytokine targeting monoclonal thera-
pies remains unclear. We investigated the distribution of eosinophils across different tissue compartments in COPD 
and analysed gene expression to understand the possible mechanistic drivers of eosinophilic inflammation in COPD.

Methods  Blood and BAL from ex-smoking volunteers with mild/moderate COPD (n = 31) and healthy ex-smoking 
controls (n = 20), and bronchial biopsy tissue in a subcohort (n = 19 and n = 8, respectively) was analysed. Differen-
tially-expressed genes (DEGs) were characterised using RNASeq. Proteomic analysis of BAL was conducted using 
mass-spectrometry.

Results  COPD subjects had more eosinophils in blood and lung tissue compared to controls, with increased eosino-
phil protein CLC/Galectin-10 in BAL. However, peripheral blood eosinophil counts related poorly to numbers in lung 
tissue (rho = -0.09192, p = 0.3541) or proportions in BAL (rho = 0.01762, p = 0.4632). Tissue IL-5Rα expression was higher 
in frequent exacerbators and related to tissue eosinophils, but not peripheral blood eosinophils.

Higher blood eosinophils were associated with DEGs that differed with compartment. Higher tissue eosinophil levels 
were associated with IL-13-induced DEGs including POSTN in bronchial brushes and CCL26 in bronchial biopsies. 
Gene-set enrichment analysis on data from brushings revealed significant enrichment of IL-4/IL-13, but not IL-5, path-
ways associated with eosinophil presence.

Conclusion  Eosinophilic lung inflammation is related to exacerbation frequency, but lung eosinophils are not pre-
dicted by blood eosinophil counts in COPD. Our data suggest IL-13-mediated pathways may be responsible 
for the presence of tissue eosinophils in COPD. Further work to establish more predictive biomarkers of lung eosino-
phil biology are required to unlock this axis to optimised treatment.
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Background
Chronic Obstructive Pulmonary Disease (COPD) is 
now the third leading cause of global mortality [1]. Cur-
rent treatments remain inadequate, with only modest 
impacts on morbidity and mortality. The prospect of 
stratifying patients for certain therapies is attractive and 
previous reports highlight blood eosinophil counts as a 
marker of steroid efficacy in COPD (reviewed in [2, 3]). 
Notably, GOLD recommends using blood eosinophil 
counts ≥ 300 cells/µl as a biomarker to be used along-
side clinical assessment to choose those most likely to 
benefit from inhaled corticosteroids [4]. Those patients 
who have blood eosinophil counts ≤ 100 cells/ µl are 
less likely to benefit from inhaled corticosteroid therapy 
[4]. The potential of more targeted therapeutics, such as 
antibodies targeting IL-5 or its receptor, requires further 
understanding after clinical trials using eosinophil-spe-
cific therapies showed disappointing results [2]. How-
ever, a positive large scale clinical trial of dupilumab (a 
monoclonal antibody targeting the IL-4 and IL-13 shared 
receptor component) has demonstrated reductions in 
exacerbation frequency [5]. Whilst peripheral blood 
eosinophil counts appear useful to select patients for 
dupliumab treatment overall, it remains uncertain how 
useful this approach was to determine individual clini-
cal response. Indeed the efficacy of this intervention was 
greater in subjects further stratified by a raised FeNO 
level, suggesting direct measures of pulmonary inflam-
mation may offer additional benefits.

Previous reports suggest that COPD patients show 
increased numbers of lung eosinophils compared with 
healthy controls, even when allergy and asthma are 
excluded [6–9]. Furthermore, recent work has demon-
strated an association between raised blood eosinophils 
and the development of obstructive lung disease [10]. 
Eosinophilic inflammation may, therefore, play an impor-
tant role in COPD immune dysregulation. However, the 
presence and proportion of lung eosinophils varies con-
siderably across COPD patients [7, 11, 12]. This may 
reflect differences in disease activity, as there is also an 
association of eosinophils with COPD exacerbations [13, 
14].

Sputum has been used to characterise lung eosinophilia 
in patients with COPD. However, the wider clinical utility 
of this approach is limited as sputum analysis is largely 
restricted to research centres [15]. Therefore, blood 
eosinophils are used as a surrogate marker to enable 
patient phenotyping more broadly. Whilst there appear 
to be strong correlations between blood and sputum 
eosinophils [13, 14], the association of blood eosinophils 
with eosinophils in lung tissue and bronchoalveolar lav-
age (BAL) is unclear. Furthermore, the impact of eosino-
phils in these different lung compartments on disease 

measures is not well defined [12, 16]. Understanding 
the nature of eosinophilic inflammation in the COPD 
lung itself is a key first step to delivering a step-change 
in treatment outcomes which is already being achieved in 
asthma [17].

To address these questions, we investigated the dis-
tribution of eosinophils in blood, BAL, and bronchial 
biopsies from deeply phenotyped COPD patients. Fur-
thermore, we characterised gene expression differ-
ences between blood, bronchial biopsies and epithelial 
brushings and their associations with the presence of 
eosinophils in these different compartments, aiming to 
understand the role and possible drivers of increased 
eosinophils in COPD.

Methods
Subjects
We recruited ex-smoking subjects with mild or moder-
ate COPD (as per GOLD) (n = 31) and healthy ex-smok-
ing volunteers (HV-ES) (n = 20) as the most relevant 
control group, all with ≥ 10-pack year history and had 
stopped smoking ≥ 6 months prior to enrolment, as part 
of the MICAII study (Fig.  1). Patients with a history of 
asthma or atopy were excluded from the cohort. Addi-
tional details about this cohort have been reported pre-
viously [18–22]. For additional analyses, COPD subjects 
were split dependent on exacerbation frequency. COPD 
subjects were classified as either infrequent exacerbators 
(IE) (≤ 1 exacerbation in the preceding 12 months before 
enrolment) or frequent exacerbators (FE) (≥ 2 exacerba-
tions in the preceding 12 months before enrolment). All 
subjects gave written informed consent, and the study 
was approved by National Research Ethics Service South 
Central ethical standards – Hampshire A and Oxford 
C Committees (LREC no: 15/SC/0528). Sampling was 
undertaken using fibreoptic bronchoscopy and epithelial 
brushings, bronchial biopsies and BAL were recovered 
and processed as previously described [19, 21, 22].

RNA isolation and sequencing
Total RNA was extracted from epithelial brushing and 
bronchial biopsy samples using the AllPrep DNA/
RNA/miRNA Universal Kit (Qiagen), whilst RNA was 
extracted from whole blood using the PAXgene Blood 
RNA Kit (Qiagen). The quantity and quality of RNA 
samples were determined using the standard RNA ana-
lyzer kit on a 96-channel Fragment analyzer (Agilent 
Technologies). Extracted samples with a yield concen-
tration > 25  ng/µl total RNA, and a DV200 value (per-
centage of RNA fragments > 200nucleotides) >  = 30% 
were deemed to be of sufficient quantity and quality for 
TotalRNA-seq analysis. Samples were diluted to 25 ng/µl 
using a Tecan Fluent liquid handling automation system 
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(Tecan). Library preparation was done in four separate 
runs, one 96 well plate per run. The Kapa RNA Hyper-
Prep Kit with RiboErase (HMR) was used for reverse 
transcription, generation of double stranded cDNA and 
subsequent library preparation and indexing to facili-
tate multiplexing (Roche), all of which was performed 
through automation on a Tecan fluent. The libraries 
were quantified with the 96-channel Fragment Analyzer 
using the standard sensitivity next generation sequenc-
ing (NGS) kit (Agilent Technologies). Samples from each 
preparation plate were pooled and the final pools (4 in 
total) were quantified using a Qubit instrument for con-
centration determination with the DNA High Sensitivity 
kit (ThermoFisher Scientific). Fragment size was deter-
mined using the Fragment Analyzer, standard sensitiv-
ity NGS kit (Agilent Technologies). Three of four library 
pools were further diluted to 1 nM and sequenced on a 
NovaSeq 6000 (Illumina) using NovaSeq 6000 S4 Reagent 
Kit, 2 × 76 cycles. The remaining library pool was diluted 
to 1.9  nM and sequenced on NovaSeq 6000 (Illumina) 
using 2 NovaSeq 6000 SP S1 Reagent Kits, 2 × 51 cyclers. 
Average reads per sample were 53.3 million.

RNASeq analysis
Fastq files from 307 paired-end sequencing libraries gen-
erated from 120 epithelial brushings, 125 bronchial biop-
sies, and 62 blood samples were collected and read quality 
for all libraries was accessed using FastQC (v0.11.9) [23], 
Qualimap (v2.2.2d) [24] and samtools stats (v1.15) [25]. 

Quality control (QC) metrics for Qualimap were based 
on a STAR (v2.7.10a) [26] alignment against the human 
genome (GRCh38, Gencode v43). Next, QC metrics were 
summarized using MultiQC (v1.12) [27]. Two libraries 
were excluded; one due to a low mapping rate (57% vs 
[79%−97%]) and another due to low sequencing through-
put (210 k reads vs [20 M-86 M]), leaving 118 epithelial 
brushings, 125 bronchial biopsies, and 62 blood sam-
ples for further analysis. Sequencing adapters were then 
trimmed from the remaining libraries using NGmerge 
(v0.3) [28]. A human transcriptome index consisting of 
cDNA and ncRNA entries from Gencode (v43) was gen-
erated and reads were mapped to the index using Salmon 
(v1.7.0) [29]. The bioinformatics workflow was organized 
using Nextflow workflow management system (v20.10) 
[30] and Bioconda software management tool [31].

Differential gene expression were assessed with 
DESeq2 (v 1.34.0) [32], using ashr (v2.2_54) [33] for fold 
change shrinkage, all in R (v4.1.3) [34]. Estimated counts 
from Salmon were used as input for DESeq2 (v1.34.0) 
using tximport (v1.22.0) [35] in R (v4.1.3). In the mod-
els used to assess differential expression between subject 
groups, effects from gender and a technical batch-effect 
(library prep plate) were taken into account. To ensure 
that the identified DEGs had robust and biologically 
meaningful expression, we applied a threshold requir-
ing a median expression value of > 0.5 log2TPM in at 
least one comparison group, alongside an adjusted 
p-value < 0.05 determined by the Benjamini–Hochberg 

Enrolled = 93

Bronchoscopy Cohort = 67

Healthy Ex-Smokers (ES) = 20Healthy Never Smokers (NS) = 16 COPD = 31
Frequent Exacerbator (FE) = 14
Infrequent Exacerbator (IE) = 17

ES Biopsy for IHC = 8NS Biopsy for IHC = 16 COPD Biopsy for IHC = 19
FE Biopsy for IHC = 9 
IE Biopsy for IHC = 10

Samples and data used in this analysis
Fig. 1  Flow diagram of patient data and samples from the MICAII study. Blue box indicates data and samples used in this analysis
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multiple testing correction method. DEGs were visual-
ised using the EnhancedVolcano package (v 1.20.0) and 
DEG overlaps visualised using ggvenn (0.1.10).

The clusterProfiler [36] package (v4.10.0) was used to 
perform Over Representation Analysis (ORA) and Gene 
Set Enrichment Analysis (GSEA) on the DEG lists. ORA 
was performed using enrichGO() for gene ontology (GO) 
categories Biological Process (BP), Molecular Function 
(MF) and Cellular Component (CC), enrichKEGG() for 
KEGG pathways and enrichPathway() for REACTOME 
pathways. GO categories and KEGG pathways were 
obtained from Bioconductor org package org.Hs.eg.db 
(v 3.18.0) [37], and REACTOME pathways were obtained 
from ReactomePA (version 1.46.0) [37, 38]. All genes 
tested for DEG analysis were used as the background 
gene set, min gene set size was 5 and max gene set size 
was 500. The Benjamini–Hochberg multiple testing cor-
rection method was applied, and significant terms/path-
ways were filtered according to an adjusted p-value < 0.05. 
The top 5 significant terms/pathways for the ORA were 
visualised in R using ggplot2 (v 3.4.4).

GSEA was performed using GSEA() on the brushings 
dataset to further investigate the presence of IL-13 sig-
nalling in this sample type. All genes were ranked tak-
ing into account both the log2FC (ashr shrunken) and 
p-value. The INTERLEUKIN_4_AND_INTERLEU-
KIN_13_SIGNALING curated C2 pathway (R-HSA-
6785807) was downloaded using msigdbr (v 7.5.1). Result 
visualisation was performed using gseaplot2() from the 
enrichplot package (v 1.22.0).

Proteomics
Proteins in BAL supernatants were analysed using 
LC MS/MS as previously described [22]. LC–MS/MS 
analysis of TMT labelled peptides was carried out on a 
Q Exactive HF-X (Thermo Fisher Scientific) mass spec-
trometer interfaced with a Dionex 3000 RSLCnano sys-
tem. Peptides were captured on a 2 cm × 75 µm C18 trap 
column (ReproSil-Pur 120 C18-AQ 7um) and samples 
were separated on a monolithic column (50 cm, cut from 
a 2  m long column, 100  µm ID, GL Sciences Inc. USA) 
using a gradient of solvent A (0.2% formic acid) and sol-
vent B (0.2% formic acid in 90% acetonitrile). Peptides 
were separated using a 90  min gradient of solvent B as 
follows: 4% to 16.5%B in 2.5—52.5 min; 33.5% B in 73 min 
followed by a stay at 98% B for 3 min and re-equilibration 
at 2% B. A flowrate of 0.7 µL/min was used. Peptides were 
sprayed in an electrospray ionization (ESI) source using 
a stainless-steel emitter with 2 kV at a capillary temper-
ature of 275  °C. A full-scan MS spectrum was collected 
at 60,000 resolution at m/z of 200 and scanned at 350–
1200 m/z with automatic gain control (AGC) of 3E6. The 
top 10 precursors were selected, and an MS/MS scan was 

obtained at 45,000 resolution with 50 ms injection time, 
isolation window of 0.9 m/z with offset 0.1 m/z, normal-
ized collision energy (NCE) of 29. For MS2, minimum 
AGC target was set to 1.7E4. Dynamic exclusion duration 
was set to 15 s. The fixed first mass was set to 100 m/z. 
Charge state exclusion was set to ignore unassigned, 1, 
and 7 and greater charges. For internal mass calibration, 
lock mass of 371.10124 m/z was used.

Mass spectrometry data was analysed using Pro-
teome Discoverer 2.3 (Thermo Fisher Scientific) soft-
ware with search engine Mascot (version 2.6.0). Data 
was searched using latest UniProt Human protein data-
base. Unfragmented precursor and TMT reporter ions 
were removed using a non-fragment filter in the PD 2.3 
workflow. Search parameters included 3 missed cleav-
ages for trypsin, oxidation (M) and deamidation (N, Q) 
as variable modifications. Tandem label (229.163  Da) at 
N-terminus and lysine residues and carbamidomethyla-
tion on cysteine residues were set as fixed modifications. 
The mass tolerances on precursor and fragment masses 
were set at 20  ppm and 0.05  Da, respectively, for MS2 
analysis. Consensus step in PD2.3 included several nodes 
for spectrum, peptide and protein grouping and FDR cal-
culation. Reporter ions for TMT labelled peptides were 
quantified using the PD quantitation node and peak inte-
gration tolerance was set at 20 ppm by considering most 
confident centroid peaks. Signal to noise values were cal-
culated in addition to measurement of intensities of the 
TMT reporter ion for peptide and protein quantitation. 
The intensities were normalized by total peptide amount 
in PD 2.3. To account for protein input, the global quanti-
tative proteome data was reviewed before normalization 
and no samples showed an unexpected pattern of distri-
bution. Albumin and haemoglobin abundances were not 
significantly different between sub-cohorts. Further nor-
malization of the data across all samples was carried out 
using Reporter Ion Quantitation in Proteome Discoverer, 
which calculates the total sum of the abundance values 
for each TMT channel over all peptides identified within 
a file. The channel with the highest total abundances 
served as a reference for correcting abundances across 
the remaining channels by a constant factor.

Immunofluorescence
Biopsies were only available from 19 COPD and 8 HV-ES 
for imaging analysis as samples for RNASeq analysis was 
prioritised (Fig.  1). Biopsies for immunofluorescence 
were fixed in 4% (w/v) formaldehyde and embedded in 
paraffin wax, as previously prescribed [39, 40]. Ten serial 
sections of 5  μm thickness were obtained using a Leica 
RM2135 microtome (Leica Biosystems, Germany). The 
sections were then mounted onto APES (3-aminopro-
pyltriethoxysilane) coated microscope slides. (CellPath, 
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Powys). To deparaffinise the tissue, microscope slides 
containing the tissue were placed into slide racks and into 
clearene (Leica Biosystems) twice with ten minutes each 
in a clearene tank. The slides were rehydrated by soaking 
them in graded alcohols solutions of 100% ethanol, 75% 
ethanol and 70% ethanol, 5 min each.

To perform H&E stains, histology slides were placed 
into Mayer’s Haematoxylin (CellPath, Powys) solution 
for 5 min, then placed under running tap water for 5 min. 
The slides were then placed into eosin stain (CellPath, 
Powys) for further 5 min. Slides were then briefly placed 
into 100% ethanol, after which they were dehydrated by 
taking them into 95% ethanol and 100% ethanol (1  min 
on each). After which they were then placed into clearene 
three times (3  min each). The slides were mounted in 
XFT mounting medium (CellPath, Powys) and cover 
slipped.

Antigen retrieval was performed by pipetting 5% (v/v) 
pronase solution onto the tissue. These slides were left 
to incubate at room temperature for 10  min, and then 
rinsed in 1 × PBS. The tissue slides were incubated at 
room temperature for a further 60  min with blocking 
solution (1 × PBS + 1% bovine serum albumin & 2% foetal 
calf serum). Excess blocking buffer was removed, primary 
antibodies were added and incubated overnight at 4  °C. 
Primary antibodies were added to all slides except the 
negative controls. 0.00125 mg/ml mouse anti-EG2 (Diag-
nostic Development, Uppsala, Sweden) or 0.005  mg/
ml rabbit anti-IL-5Rα (ThermoFisher, UK) primary 
antibodies incubated overnight at 4  °C. Tissue was also 
incubated overnight with just the blocking buffer. After 
overnight incubation, the slides were washed in PBS and 
then 0.002  mg/ml AlexaFluor647 goat anti-mouse or 
0.004  mg/ml AlexaFluor647 goat anti-rabbit secondary 

antibodies (both ThermoFisher) were incubated at room 
temperature for 1 h, after which the slides were washed 
in PBS. The tissue was then stained with DAPI (Roche, 
Germany) at room temperature for 10 min, after which it 
was washed off. The slides were mounted onto coverslips 
with mowiol (Sigma-Aldrich, UK).

Statistics
Analysis of two groups was performed using a Mann–
Whitney U test. Fishers exact test was used for cat-
egorical data (GraphPad Prism v9, GraphPad Software 
Inc., San Diego, USA). Associations were assessed using 
Spearman’s correlation with rho and p values presented. 
Results were considered significant if p < 0.05.

Results
Subject demographics
This study included 31 COPD subjects and 20 HV-ES as 
the most relevant control group; characteristics are sum-
marised in Table 1. No significant differences were seen 
in age, sex, or BMI. Expected differences were seen in 
lung function. 

Eosinophils and associated proteins are increased in COPD
We first characterised whether blood eosinophil levels 
were different between COPD subjects and HV-ES and 
observed a significantly higher number of eosinophils 
in the blood of COPD subjects (p = 0.0264). Further-
more, we found a trend towards increased proportions 
of eosinophils in the BAL of COPD subjects vs HV-ES 
(p = 0.0547) (Table  1). We subsequently conducted an 
unbiased proteomic analysis of the BAL supernatant 
from our cohort and, of the 906 proteins detected, 7 pro-
teins were significantly more highly expressed in the BAL 

Table 1  Subject demographics

Bold values indicate statistical significance

BAL = Bronchoalveolar lavage, BDP = beclomethasone dipropionate, BMI = body mass index, COPD = chronic obstructive pulmonary disease, FEV1 = forced expiratory 
volume in one second, FVC = forced vital capacity, HV-ES = health volunteer ex-smoker who had stopped smoking for at least 6 months, ICS = inhaled corticosteroid. 
Data are presented as median and IQR (interquartile range) unless otherwise indicated. Continuous data were analysed using a one-tailed Mann Whitney test; 
categorical data were analysed using a Fisher’s Exact test. *Data shown represents 20 HV-ES and 30 COPD subjects

HV-ES COPD P Value

N of subjects 20 31 –

M/F 11/9 25/6 0.0645

Age 67.5 (64.25–72.50) 70.0 (66.0–76.0) 0.2316

FEV1% 100.5 (94.25–109.5) 73.0 (61.0–83.0)  < 0.0001
FEV1/FVC ratio % 77.5 (74.25- 79.75) 58.0 (51.0–66.0)  < 0.0001
Frequent Exacerbators % (n) – 45% (14) –

ICS use % (n) – 61% (19) –

ICS (BDP equivalent, µg)* 0 (0.0–0.0) 480 (0–1000)  < 0.0001
BMI, kg/m2 27.69 (25.65–30.61) 28.49 (26.06–32.15) 0.2863

Blood eosinophils (109/L) 0.1 (0.1–0.25) 0.3 (0.1–0.3) 0.0264
BAL eosinophils (%)* 0.6 (0.1–1.0) 0.93 (0.43–2.50) 0.0547
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of COPD subjects compared to HV-ES (Fig.  2A). These 
7 proteins all associated with granulocyte activation, 
and included proteases such as MPO and ELANE. The 
protein with the greatest fold-change (Log2FC 1.81) and 
significance (adjp = 0.002) was the eosinophil-associated 
Charcot-Leyden Crystal (CLC/Galectin-10).

In addition to numbers of eosinophils in blood and 
BAL, we characterised the presence of tissue eosinophils 
in formalin-fixed, paraffin-embedded (FFPE) bronchial 
biopsies from a sub-cohort of 19 COPD subjects and 8 
HV-ES (demographics in Table  S1). Using immunofluo-
rescence (IF) targeting eosinophil cationic protein (ECP), 
we identified the presence of tissue eosinophils in both 
COPD and HV-ES subjects (Fig.  2B). Furthermore, we 
found significantly greater numbers of eosinophils in tis-
sue from COPD subjects vs HV-ES (p = 0.0108, Fig. 2C). 
Within this IF subcohort, numbers of blood and BAL 
eosinophil proportions were also significantly elevated 
in COPD patients compared with HV-ES (Table S1). Fur-
thermore, the signal of significantly greater CLC/Galec-
tin-10 expression in the COPD vs HV-ES BAL proteome 
was maintained (Log2FC 1.12, adjp = 0.014).

BAL and tissue eosinophil levels do not correlate 
with blood eosinophils in COPD
Following demonstration of increased numbers of blood 
and tissue eosinophils and proportions of BAL eosino-
phils in COPD vs HV-ES, we next investigated whether 
levels of eosinophils correlated between each compart-
ment. Within the whole cohort, we found only a weak 
positive correlation between blood eosinophil numbers 
and the proportion of eosinophils in BAL (rho = 0.2608, 
p = 0.0337). There was no correlation between blood 
eosinophil numbers and the proportion of eosinophils in 
BAL in COPD subjects alone (rho = 0.01762, p = 0.4632). 
We found no correlation between blood eosinophil 

numbers and tissue eosinophil numbers in COPD and 
HV-ES (rho = 0.1192, p = 0.2768) or in COPD subjects 
alone in the IF subcohort (rho = −0.09192, p = 0.3541). 
There was a weak negative correlation between tissue 
eosinophil numbers and the proportion of eosinophils 
in BAL in the IF subcohort (rho = −0.3433, p = 0.0430). 
This was also seen in IF subcohort COPD subjects alone 
(rho = −0.4961, p = 0.0181).

Gene expression changes associated with blood 
eosinophils within COPD
To further investigate differences that may be driving 
mechanisms underlying eosinophilic inflammation spe-
cifically in COPD, we compared COPD subjects who 
had ≥ 300 cells/µl blood eosinophils or not upon recruit-
ment [4] (Table 2); these subjects are referred to as high 
and low blood eosinophil COPD subjects respectively. 
High blood eosinophil COPD subjects had better pre-
served lung function than low blood eosinophil COPD 
subjects. However, there were no other significant dif-
ferences between the groups besides blood eosinophil 
numbers.

To understand the processes that might be contribut-
ing to increased eosinophils in COPD, we compared 
genes that are differentially regulated between high and 
low blood eosinophil COPD subjects in blood, epithe-
lial brushing and bronchial biopsy samples. In blood, 
8 differentially expressed genes (DEGs) were identified 
(Fig.  3A, all upregulated), including IL5RA, SIGLEC8 
and CLC (Table  S2A). In epithelial brushings, 21 DEGs 
(Fig. 3B, 10 upregulated, 11 downregulated) were identi-
fied (Table  S2B). Furthermore, there were 137 DEGs in 
bronchial biopsies (Fig.  3c, 116 upregulated, 21 down-
regulated) (Table  S2C). There was no overlap of DEGs 
between the three compartments sampled. (Fig.  3D). 
Over-representation analysis revealed the bronchial 

Fig. 2  Presence of eosinophils in the lung of HV-ES and COPD subjects. A Volcano plot of BAL proteomics in HV-ES vs. COPD. B Bright-field Mayer’s 
haematoxylin and eosin (H&E) and immunofluorescence (IF) staining for eosinophils on human lung tissue from HV-ES and COPD subjects. 
Images were captured using a 20 × objective on an Olympus VS110 slide scanning microscope, scale bar 50 μm. C Scatter diagram of eosinophils 
in the lung tissue of HV-ES and COPD subjects, quantified in cells/mm2. Statistical analysis was performed with one-tailed Mann–Whitney’s; p < 0.05*
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biopsy DEGs were enriched in metabolic processes 
(Fig. 3E).

Gene expression changes associated with tissue 
eosinophils within COPD IF subcohort
To understand which genes may determine an increase 
in tissue eosinophils, we next investigated both the 

phenotypic and gene expression associations with tis-
sue eosinophils in COPD subjects within the IF subco-
hort. As there are no definitive thresholds of high tissue 
eosinophils in the literature we used the median value 
of 200 cells/mm2 as a threshold to define the low and 
high tissue eosinophil groups. Unlike the previous blood 
eosinophil analysis, there was no significant difference in 

Table 2  – COPD subject demographics based on blood eosinophilia

Bold values indicate statistical significance

BAL = Bronchoalveolar lavage, BDP = beclomethasone dipropionate, BMI = body mass index, COPD = chronic obstructive pulmonary disease, FEV1 = forced expiratory 
volume in one second, FVC = forced vital capacity, ICS = inhaled corticosteroid. Data are presented as median and IQR (interquartile range) unless otherwise indicated. 
Continuous data were analysed using a one-tailed Mann Whitney test; categorical data were analysed using a Fisher’s Exact test. #ICS dose data shown represents 20 
COPD subjects with < 300 cells/µl and 11 COPD subjects with ≥ 300 cells/µl.*BAL data shown represents 19 COPD subjects with < 300 cells/µl and 11 COPD subjects 
with ≥ 300 cells/µl

 < 300 cells/µl  ≥ 300 cells/µl P Value

N of subjects 20 11 –

M/F 16/4 9/2 0.6462

Age 70.0 (61.25–75.75) 72.0 (67.0–76.0) 0.1761

FEV1% 69.5 (58.75–79.25) 82.0 (62.0–87.0) 0.0442
FEV1/FVC ratio % 57.0 (46.75–62.50) 63.0 (52.0–70.0) 0.0402
Pack-years of smoking 47.0 (25.31–59.06) 40 (20.0–60.0) 0.4396

Frequent Exacerbators % (n) 45.0% (9) 45.45% (5) 0.6361

ICS use % (n) 60.0% (12) 63.6% (7) 0.5769

ICS (BDP equivalent, µg)# 480 (0–1000) 730 (0–1250) 0.3782

BMI, kg/m2 28.32 (26.07–31.90) 29.88 (24.44–32.27) 0.2641

Blood eosinophils (109/L) 0.1 (0.1–0.2) 0.3 (0.3–0.4)  < 0.0001
BAL eosinophils (%)* 1.0 (0.6–3.1) 0.6 (0.2–2.0) 0.2938

Fig. 3  Transcriptomic differences across different compartments of COPD subjects associated with blood eosinophil levels. Differential gene 
expression analysis compared COPD subjects with high and low blood eosinophils and identified (A) 8 DEGs in blood, (B) 21 DEGs in epithelial 
brushings and (C) 137 DEGs in bronchial biopsies, but no DEGS (D) were shared between sample compartments. E Enrichment analysis of DEGs 
derived from bronchial biopsy samples identified significant enrichment metabolic processes. Gene list enrichment using over representation 
analysis was performed using clusterProfiler. In (E) only the top 5 significantly enriched (adjusted p-value < 0.05) terms and/or pathways are 
visualised and are ordered by enrichment significance
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lung function between the 2 groups of COPD subjects 
(Table 3). In line with the negative correlation described 
above, the proportion of BAL eosinophils was signifi-
cantly lower in the tissue eosinophil high group than in 
the tissue eosinophil low group (Table 3).

Analysing gene expression differences between COPD 
subjects with high and low tissue eosinophils from this 
smaller IF subcohort revealed 5 DEGs in blood (Fig. 4A, 
3 upregulated, 2 downregulated). In epithelial brush-
ings, 32 DEGs (18 upregulated, 14 downregulated) were 
identified, including POSTN, encoding a matrix protein 
induced by IL-13 (Fig.  4B) [41]. In bronchial biospies, 
13 DEGs (4 upregulated, 9 downregulated) were identi-
fied (Fig. 4C). Again, no DEGs were commonly differen-
tially expressed between all 3 compartments (Fig.  4D). 
However, IFI6 and LRRC37A were downregulated in 
both epithelial brushings and biopsies (Table  S3). Gene 
set enrichment anlaysis (GSEA) was performed to fur-
ther investigate the potential impact of IL-13 signalling 
in epithelial brushings and identified positive significant 
enrichment of the REACTOME IL-13/IL-4 signaling 
pathway (NES = 1.54, p = 0.005, Fig. 4E).

Tissue IL‑5Rα expression
To further investigate why tissue eosinophils may be 
increased in COPD, we also probed the biopsy tissue in 
the IF subcohort for the α-subunit of the receptor for the 
eosinophil survival factor IL-5 (IL5Rα). IL5Rα appeared 
to be widely expressed in submucosal glandular tissue 
in addition to eosinophils (Fig. 5A). In contrast to tissue 
eosinophils, there was no significant difference in total 

expression of IL5Rα between COPD subjects and HV-ES 
subjects in the IF subcohort (p = 0.1633). There was also 
no significant differential expression of IL5Rα between 
COPD patients with high blood eosinophils compared to 
COPD patients with low blood eosinophils in the IF sub-
cohort (p = 0.2294).

In the IF subcohort, we observed a weak but significant 
correlation between tissue IL5Rα expression and tissue 
eosinophil numbers in COPD and HV-ES (rho = 0.3148, 
p = 0.0478) and this correlation strengthened when only 
COPD subjects from the IF subcohort were included 
(rho = 0.5628, p = 0.0121, Fig.  5B). There was signifi-
cant differential expression of IL5Rα between COPD 
high tissue eosinophils vs COPD low tissue eosinophils 
(p = 0.031, Fig. 5C).

In terms of IF subcohort patient phenotype, there 
was a significant increase in tissue IL5Rα expression in 
those patients who experienced frequent exacerbations 
(p = 0.0131, Fig. 5D) but tissue eosinophils were not dif-
ferent based on exacerbation history (p = 0.1388, Fig. 5E).

Discussion
Our study used a deeply-phenotyped cohort to demon-
strate a clear increase in eosinophils in the blood, BAL 
and tissue of mild-moderate COPD patients compared 
to healthy, ex-smokers. These eosinophils appear to be 
activated in the lung due to increased levels of CLC/
Galectin-10 in the BAL of COPD patients. We further 
found that blood eosinophil levels did not correlate with 
eosinophil levels in BAL or lung tissue in COPD subjects, 
raising new questions about the utility of this measure 

Table 3  – Immunofluorescence (IF) subcohort COPD subject demographics based on tissue eosinophilia

Bold values indicate statistical significance

BAL = Bronchoalveolar lavage, BDP = beclomethasone dipropionate, BMI = body mass index, COPD = chronic obstructive pulmonary disease, FEV1 = forced expiratory 
volume in one second, FVC = forced vital capacity, ICS = inhaled corticosteroid. Data are presented as median and IQR (interquartile range) unless otherwise indicated. 
Continuous data were analysed using a one-tailed Mann Whitney test; categorical data were analysed using a Fisher’s Exact test. #ICS dose data shown represents 8 
COPD subjects with < 300 cells/µl and 10 COPD subjects with ≥ 300 cells/µl.*BAL data shown represents 9 COPD subjects with < 200 cells/mm2 and 9 COPD subjects 
with ≥ 200 cells/mm2

 < 200 cells/mm2l  ≥ 200 cells/mm2 P Value

N of subjects 9 10 –

M/F 9/0 8/2 0.2632

Age 71.0 (66.5–74.5) 69.5 (64.0–75.0) 0.3077

FEV1% 75.0 (69.5–90.0) 78.5 (61.75–82.25) 0.2170

FEV1/FVC ratio 61.0 (54.5–68.5) 60.0 (49.00–63.75) 0.1934

Pack-years of smoking 60.0 (20.00–71.25) 45.5 (15.75–65.00) 0.3094

Frequent Exacerbators % (n) 44.44% (4) 50.0% (5) 0.5859

ICS use % (n) 66.7% (6) 50.0% (5) 0.3950

ICS (BDP equivalent, µg)# 480 (0–1000) 500 (0–1000) 0.4590

BMI, kg/m2 31.44 (28.84–33.09) 24.87 (24.05–32.04) 0.0380
Blood eosinophils (109/L) 0.30 (0.15–0.30) 0.25 (0.10–0.48) 0.4708

BAL eosinophils (%)* 1.30 (0.60–5.08) 0.50 (0.20–1.00) 0.0481
Tissue eosinophils (cells/mm2) 85.0 (12.0–118.5) 441.0 (295.8–1266.0)  < 0.0001
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alone for understanding lung tissue inflammation. We 
observed a significant correlation between tissue eosino-
phils and tissue IL5Rα expression. However, lung IL5Rα 
expression was not limited to eosinophils, with substan-
tial IL5Rα expression in submucosal glands, further indi-
cating a possible role for IL-5 receptor signalling in the 
epithelium [42]. Of note, in the context of recent trials, 
tissue eosinophils were associated with DEGs known to 
be regulated by IL-13.

Our study highlights the complexity of eosinophilic 
inflammation in COPD with the impact of eosinophils 
on disease characteristics being subtle and related to the 
compartment in which eosinophils are measured. Cur-
rent GOLD guidelines recommend using blood eosino-
phil counts ≥ 300 cells/µl as a biomarker to identify those 
with the greatest likelihood of treatment benefit with 
inhaled corticosteroids [4]. Using RNASeq, bronchial 
biopsies had the greatest number of DEGs that associated 
with this measure of increased blood eosinophils with 

enrichment of genes in numerous metabolic pathways. 
However, there were very few bronchial biopsy genes 
associated with tissue eosinophilia. These data highlight 
the impact that measuring eosinophils in different com-
partments has on defining patient lung relevant endo-
types. Furthermore, they suggest a complex relationship 
between raised eosinophils and T2-gene signatures, inde-
pendent of IL-5, which has implications for using eosino-
phils as a treatable trait in COPD.

Our data also highlight the complexity in defining 
raised eosinophils in COPD as whilst previous data sup-
ports a correlation between blood and sputum [13, 14, 
43], blood does not appear to be a good biomarker of 
tissue or BAL eosinophils in patients and we observed 
marked compartmental differences. Adding further com-
plexity, there was a negative correlation between BAL 
and tissue eosinophils. Eltoboli et  al. (2015) previously 
demonstrated an association of increased tissue eosino-
phils with reticular basement membrane thickening of 

Fig. 4  Transcriptomic differences across different compartments of COPD subjects associated with tissue eosinophil levels Differential gene 
expression analysis on the immunofluorescence (IF) sub cohort compared COPD subjects with high and low tissue eosinophil levels and found (A) 
5 DEGs in blood, (B) 13 DEGs in bronchial biopsies and (C) 32 DEGs in epithelial brushings, and very few DEGS (D) were shared between sample 
compartments. (E) Gene set enrichment analysis (GSEA) on the IF subcohort ranked epithelial brushings gene list identified positive significant 
enrichment of the REACTOME IL-4/IL-13 pathway (R-HSA-6785807). GSEA was performed using clusterProfiler. NES = normalised enrichment score.
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COPD patients, suggesting that the presence of these 
cells in tissue is important for disease [12]. Whilst there 
is some evidence for the stability of eosinophil numbers 
in bronchial biopsies from COPD patients [11, 44], our 
observation of a lack of correlation between compart-
ments agrees with a study including 294 COPD patients 
that also demonstrated no correlation between compart-
ments [16]. The weak correlations between blood and 
BAL suggests vascular leakage may be playing a role in 
the detection of eosinophils in the BAL but not residency 
of these cells in the tissue. Indeed, as there is a negative 
correlation between the tissue and the airway lumen, this 
observation might suggest that opposing mechanisms are 
involved in retaining eosinophils in the tissue or traffick-
ing to the lumen.

Despite the lack of correlation between blood and 
tissue eosinophils, we did observe a gene expression 
signature associated with blood eosinophils in the bron-
chial biopsy tissue, many of which were associated with 

metabolic processes. This increased expression of meta-
bolic genes could be a result of the ongoing energy 
demands of eosinophil-driven inflammatory processes 
in the tissue [45]. Alternatively, given that high blood 
eosinophils were associated with more preserved lung 
function, this increase in metabolic processes may repre-
sent ongoing repair processes [46]. Further work will be 
required to either confirm or refute these speculations.

To understand the drivers of increased tissue eosino-
phils in COPD, we investigated the gene expression dif-
ferences associated with this trait. In brushings, there is 
further evidence of increased T2 inflammatory processes, 
with increased expression of POSTN, encoding periostin. 
Periostin expression in the epithelium is increased by 
the T2-cytokine, IL-13, and in asthma has been associ-
ated with both increased airway eosinophils and mucus 
secretion [41]. In biopsies, there was also an increase in 
CCL26, encoding the eosinophil chemokine eotaxin-3, 
expression of which is also known to be increased by IL-4 

Fig. 5  Tissue IL5Rα expression and associations with tissue eosinophils. A Bright-field Mayer’s haematoxylin and eosin (H&E) and IF staining 
for IL5Rα on human lung tissue from HV-ES and COPD subjects. Images were captured using a 20 × objective on an Olympus VS110 slide scanning 
microscope, scale bar 50 μm. B Spearman’s non-parametric correlation between eosinophils and IL5Rα in the lung tissue of COPD subjects. C IL5Rα 
in the lung tissue of COPD subjects with tissue eosinophil count below 200 cell/mm2 and above 200 cells/mm2. D Distribution of IL5Rα in lung 
tissue of COPD subjects separated into infrequent (P-IE) and frequent exacerbators (P-FE) phenotype. E Eosinophils in the lung tissue of COPD 
subjects with P-IE and P-FE phenotype. Two-tailed Mann–Whitney’s statistical analysis was performed; p < 0.05*
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and IL-13 [47]. Our GSEA further supports the pres-
ence of T2 inflammation through identification of posi-
tive enrichment of IL-13/IL-4 signalling in the brushings 
dataset. This evidence of increased IL-13 signalling in 
patients with increased tissue eosinophils may provide 
some explanation for the observed efficacy of dupliumab 
in COPD [5].

Taken together, these data suggest that elevated 
eosinophil counts are common in COPD but that tissue 
eosinophils may be more relevant to continuing disease 
processes than blood or luminal eosinophils. This obser-
vation may explain the limited efficacy of anti-IL-5 treat-
ments in preventing COPD exacerbations and disease 
progression as these studies used blood eosinophils to 
stratify these patients [48, 49]. These anti-IL-5 treatments 
are effective at reducing blood eosinophils, but our data 
suggest that IL-13-driven pathways may be responsible 
for the maintenance and survival of these cells in COPD 
lung tissue. Further support for this observation comes 
from the BOREAS trail which demonstrated no signifi-
cant effect of 52-week dupliumab treatment on blood 
eosinophil levels despite a significant effect on exacerba-
tions and prebronchodilator FEV1, although FeNO was 
reduced [5].

We recognise that this study is not without its limita-
tions. Due to the deep characterisation of subjects and 
intensive sampling, the cohort is small and the study cap-
tured only cross-sectional measures, providing no insight 
into eosinophil stability in the different compartments 
over time and disease states (e.g. stable vs exacerbation). 
We thus cannot fully rule out that lack of correlations 
are not due to cohort size. In particular, the size of the IF 
cohort was limited due to capture of tissue for RNASeq 
being prioritised. Additionally, sputum data was not 
available from all subjects and thus we have no data as to 
the correlation between tissue and sputum eosinophils. 
Our study included mild-moderate COPD patients and 
gives insights about earlier disease. Comparison of our 
findings with those in more severe disease in future stud-
ies is merited.

Our study demonstrates a clear increase in eosino-
phils in COPD compared to health in both blood, BAL 
and lung tissue. Furthermore, we demonstrate that blood 
eosinophil levels did not correlate with eosinophils nor 
IL5Rα expression in tissue. We have identified differen-
tially expressed genes that associated with eosinophils 
in different compartments. Blood eosinophils do define 
an inflammatory endotype that can be detected in lung 
tissue but do not reflect the expected IL-5-mediated 
pathways. Further delineating the complex signalling 
pathways driving tissue eosinophilic inflammation in 
COPD with mechanistic studies could provide informa-
tion on optimal targeting of existing and novel therapies.

Take home message
There is active eosinophilic inflammation in the lungs of 
COPD patients compared to controls but blood eosino-
phils alone do not reflect tissue eosinophils or gene 
expression. Understanding of lung eosinophil biology is 
needed to tailor new therapy.
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