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Abstract
Background High altitude pulmonary edema (HAPE) poses a significant medical challenge to individuals ascending 
rapidly to high altitudes. Hypoxia-induced cellular morphological changes in the alveolar-capillary barrier such as 
mitochondrial structural alterations and cytoskeletal reorganization, play a crucial role in the pathogenesis of HAPE. 
These morphological changes are critical in understanding the cellular response to hypoxia and represent potential 
therapeutic targets. However, there is still a lack of effective and valid drug discovery strategies for anti-HAPE 
treatments based on these cellular morphological features. This study aims to develop a pipeline that focuses on 
morphological alterations in Cell Painting images to identify potential therapeutic agents for HAPE interventions.

Methods We generated over 100,000 full-field Cell Painting images of human alveolar adenocarcinoma basal 
epithelial cells (A549s) and human pulmonary microvascular endothelial cells (HPMECs) under different hypoxic 
conditions (1%~5% of oxygen content). These images were then submitted to our newly developed segmentation 
network (SegNet), which exhibited superior performance than traditional methods, to proceed to subcellular 
structure detection and segmentation. Subsequently, we created a hypoxia scoring network (HypoNet) using over 
200,000 images of subcellular structures from A549s and HPMECs, demonstrating outstanding capacity in identifying 
cellular hypoxia status.

Results We proposed a deep neural network-based drug screening pipeline (CPHNet), which facilitated 
the identification of two promising natural products, ferulic acid (FA) and resveratrol (RES). Both compounds 
demonstrated satisfactory anti-HAPE effects in a 3D-alveolus chip model (ex vivo) and a mouse model (in vivo).

Conclusion This work provides a brand-new and effective pipeline for screening anti-HAPE agents by integrating 
artificial intelligence (AI) tools and Cell Painting, offering a novel perspective for AI-driven phenotypic drug discovery.
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Background
High altitude pulmonary edema (HAPE) presents a sig-
nificant medical challenge, particularly to individuals 
rapidly ascending to high altitudes without adequate 
acclimatization [1, 2]. This condition, characterized by 
fluid accumulation in the lung, can rapidly progress to 
a life-threatening state if left unaddressed [3]. The onset 
of HAPE involves complex factors, including pulmo-
nary hypertension, inflammation, and changes in the 
alveolar-capillary barrier. However, the specific mecha-
nisms remain unclear [4, 5]. Recent studies indicate 
that hypoxia and pulmonary hypertension can lead to 
the activation of VEGF signaling, resulting in increased 
permeability of the alveolar-capillary barrier [6, 7]. This 
change is likely a key factor in HAPE pathogenesis, as it 
allows fluid to leak into the alveolar spaces, leading to 
pulmonary edema [1]. Additionally, hypoxia-induced 
morphological and functional alterations in the vascular 
endothelial cells and alveolar epithelial cells are consid-
ered critical determinants in the pathogenesis of pulmo-
nary hypertension [8, 9]. Thus, it is worthwhile to develop 
models to investigate the interventional effects of agents 
on hypoxia-induced cellular changes in order to facilitate 
the efficient screening of potential anti-HAPE agents.

Cell Painting, an evolution of high content screening 
(HCS), employs six different dyes to stain various subcel-
lular structures and images them across multiple chan-
nels [10]. This technology can identify the mechanism 
of action (MoA) of agents early in drug development, 
guiding hit expansion based on structure-phenotype 
relationships, and avoiding the misinterpretation asso-
ciated with nominal targets [11, 12]. Cell Painting can 
provide comprehensive morphological data, enhance the 
reliability of phenotypic analyses and facilitate the rapid 
identification of agents that effectively improve HAPE-
related cellular phenotypes, thus increasing success rates 
of screening and accelerating drug development [13]. 
Despite this, the unbiased quantitative evaluation of 
morphological changes in a large number of Cell Paint-
ing images is challenging using conventional methods. 
A scoring system that can quantitatively assess cellular 
states could be a crucial tool for drug screening, enabling 
more accurate and efficient identification of promising 
therapeutic agents [14, 15]. Recent advancements in deep 
learning have significantly enhanced the analysis of cel-
lular images, offering efficient tools for interpreting com-
plex morphological changes [16, 17]. These AI methods, 
such as the YOLO family [18], could effectively extract 
individual cells and identify intricate morphological fea-
tures from high-content images, facilitating rapid and 
automated classification of cellular phenotypes as well as 
precise assessment of drug effects [19–21].

The actual physiological environment involves intricate 
interactions among multiple cell types within complex 

three-dimensional structures, which conventional two-
dimensional cell cultures cannot adequately replicate. 
Organ-on-chip (OoC) technology effectively bridges this 
gap by simulating key physiological conditions, such as 
cell-to-cell interactions and mechanical forces, offering 
a model that more closely resembles the in vivo human 
environment [22]. Compared to traditional cell culture 
methods, OoC technology provides a more accurate 
assessment of drug efficacy while significantly reduc-
ing the reliance on animal testing [23]. However, in vivo 
models remain indispensable for validating the accuracy 
and translational relevance of in vitro findings. C57BL/6 
mice, for instance, exhibit hypoxia-induced inflammatory 
responses in lung tissues that closely mirror the mecha-
nisms observed in human HAPE, making them particu-
larly suitable for confirming the reliability of OoC data 
and ensuring that these microphysiological systems can 
effectively translate into clinical applications [24–26].

In this study, we hypothesized that deep learning could 
accurately identify morphological alterations of hypoxic 
cells from Cell Painting images and propose a novel pipe-
line, CPHNet, for the identification of potential thera-
peutics for HAPE (Fig. S1). This pipeline transitions the 
screening process from a manual or semi-automated pro-
cedure to a fully automated one by employing two deep 
learning models: a segmentation network (SegNet) and a 
Hypoxia Scoring Network (HypoNet). SegNet effectively 
detects and segments subcellular structures in full-field 
images of A549 and HPMECs. HypoNet excels at assess-
ing the extent of hypoxia in these cells. Finally, we applied 
CPHNet in screening potential anti-HAPE agents and 
validated the results using OoC technology and animal 
models.

Methods
Cell culture and hypoxia treatment
Training group
In accordance with the manufacturer’s instructions, A549 
and HPMEC cell lines (obtained from the ATCC cell 
repository) were cultured in DMEM with the addition 
of 10% FBS, L-glutamine (0.292  mg/ml), penicillin (100 
U/ml), and streptomycin (100  mg/ml). The cells were 
seeded at a density of 8000 cells per well in PhenoPla-
teTM-Ultra 96-well black plates (PerkinElmer, 6055302). 
Four parallel plates were prepared for each cell line and 
were incubated overnight in a 37 °C, 5% CO2 cell culture 
incubator. Post-adherence, three of the plates for every 
cell line were transferred to hypoxic culture chambers set 
at oxygen levels of 1%, 3%, and 5% respectively, with the 
conditions maintained at 37  °C and 5% CO2 for a dura-
tion of 24 h. Meanwhile, the fourth plate for each cell line 
was left cultured under standard oxygen concentration 
during the same timeframe. Subsequently, the four plates 
underwent cell staining and imaging.
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Screening group
A549 and HPMEC were divided into one normoxia 
group (NH), one 5% hypoxia group (HY), and eleven 
hypoxia treatment groups, totaling 13 groups (n = 6). 
Each group was seeded with 3000 cells per well in 
black plates. After cell adhesion, the hypoxia treatment 
groups underwent medium changes, and 0.1 µM tetra-
methylpyrazine (Macklin, T819555), 0.68 µM tanshi-
none IIA (MCE, HY-N0135), 0.64 µM salvianolic acid 
B (MCE, HY-N1362), 0.05 µM salvianolic acid C (MCE, 
HY-N0319), 0.05 µM 20(S)-ginsenoside Rh2 (Chinese 
Pharmacopoeia Institute, 111748), 0.05 µM acetazol-
amide (Aladdin, A194116), 0.1 µM catechin (MCE, 
HY-N0898), 0.1 µM resveratrol (Chinese Pharmacopoeia 
Institute, 111535), 0.025 µM ferulic acid (Chinese Phar-
macopoeia Institute, 110773), 0.01  µg/ml compound 
Danshen dripping pills (National Medical Products 
Administration, Z10950111), and 0.005  µg/ml Hon-
gyi capsules (Military Medicine Approval, Z2019006) 
were added in a medium change format (Fig. S2). The 
NH group and HY group underwent regular medium 
changes. After 24  h of incubation, the HY group and 
hypoxia treatment groups were transferred to a three-
gas hypoxic culture chamber for an additional 24 h, with 
the NH group cultured under normal oxygen concentra-
tion during this period. Following removal, the cells were 
stained and imaged.

Cell staining
PhenoVue Cell Imaging Kit contains six dyes necessary 
for cell imaging experiments. These dyes corresponded to 
various cellular compartments: the 33,342 Nuclear Stain 
marked DNA; the 488 Concanavalin A marked the endo-
plasmic reticulum; the 512 Nuclear Acid Stain marked 
nucleoli and cytoplasmic RNA; the 568 Phalloidin were 
used to label the actin cytoskeleton; the 555 WGA 
marked plasma membrane and Golgi apparatus; and the 
641 Mitochondrial Stain marked mitochondria. We sub-
stituted PhenoVue Fluor 555-WGA with CellBrite Fix 555 
(Biotium, 30088  A). PhenoVue Fluor 641-Mitochondrial 
Stain and PhenoVue Fluor 512-Nucleic Acid Stain were 
combined in a dye dilution solution to prepare Stain-
ing Solution 1, while the remaining dyes were diluted in 
another solution to prepare Staining Solution 2.

After removal of the culture medium, 50  µl of Stain-
ing Solution 1 was added to each well and incubated 
in the dark at 37  °C, 5% CO2 for 30 min. The cells were 
washed three times with 100 µl of HBSS solution (Gibco, 
2507502) per well. Then, 15 µl of 16% PFA was added to 
each well and the cells were fixed at room temperature 
for 20  min, followed by one wash with HBSS solution. 
Subsequently, 50  µl of 0.1% Triton X-100 solution was 
added to each well and incubated at room temperature in 

the dark for 15 min to increase cell permeability. The cells 
were washed twice with HBSS solution.

Afterwards, 50 µl of Staining Solution 2 was added to 
each well and incubated in the dark at room temperature 
for 30 min. The cells were washed three times with 100 µl 
of HBSS solution, with the final HBSS solution being 
retained. The samples were stored in the dark.

Multi-channel cellular imaging
The microplate was placed in the Opera Phoenix high-
content imaging system, and the microscope acquisi-
tion settings were configured following the description 
by Bray et al. [10]. Cells were imaged at 60× magnifica-
tion using a water-immersion objective. To ensure unbi-
ased results, multiple full-field images were captured per 
well using six different wavelength ranges according to 
the application note (Table S1). The exported grayscale 
images were processed using ImageJ, which transformed 
the original images into RGB pseudo-colored versions, 
thereby improving the extraction of features from differ-
ent cellular compartments.

Data preprocessing for SegNet
To achieve deep learning-based segmentation and 
extraction of individual cells, we built our segmentation 
network (SegNet) using transfer learning based on the 
YOLO v8n framework. The source dataset comprised 
thousands of grayscale images from six subcellular struc-
tures, namely nucleus (DNA), endoplasmic reticulum 
(ER), actin/Golgi apparatus (AG), mitochondria (Mito), 
plasma membrane (PM) and RNA. For the convenience 
of visual observation and manual annotation, we devel-
oped an ImageJ plugin to convert these grayscale images 
into pseudo-color images. Subsequently, we constructed 
two training datasets through manual annotation, one 
for cell nucleus segmentation (NS) and the other for cell 
membrane segmentation (MS). Manual annotation refers 
to the use of specialized annotation software, named 
LabelMe (version 5.2.1), to manually outline masks that 
cover the regions of cell nucleus or membranes in a full-
field image by selecting vertices to generate polygons. It’s 
important to highlight that prior to manual annotation, 
we merged the original grayscale images of DNA, AG, 
and PM into a single DAP RGB pseudo-colored image, 
thereby creating the MS dataset. The reason for including 
the DNA in the MS images was that the presence of the 
nucleus could make it easier to identify the cell’s location, 
and it can provide guidance for membrane localization.

Training of SegNet
SegNet was designed to simultaneously perform NS and 
MS tasks. For NS, the segmentation object was DNA, 
while for MS, the segmentation object was DAP.
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To train the model, we input our NS and MS set 
together. We customized the hyperparameters of the 
model, including the number of training epochs (200), 
image size (960 pixels), number of workers [8], batch size 
[8], initial learning rate (0.01), and learning rate decay 
factor (0.01). Furthermore, we utilized transfer learn-
ing in the training process by incorporating pre-trained 
weights. During our training process, we employed vari-
ous data augmentation techniques to enhance the diver-
sity and robustness of our dataset, such as translation, 
scaling, horizontal flipping, and mosaic augmentation.

Evaluation of SegNet
Mean Average Precision (mAP) is a commonly employed 
metric to assess the effectiveness of object detection and 
segmentation algorithms. mAP@0.5 calculates the Aver-
age Precision (AP) for each class when the Intersection 
over Union (IoU) threshold is set to 0.5. The mAP is then 
obtained by averaging the AP values across all classes. 
mAP@0.5:0.95 represents the mAP across various IoU 
thresholds, ranging from 0.5 to 0.95 with a step size of 
0.05.

 
IoU = TP

FP + TP + FN
 (1)

In addition, to compare with the segmentation perfor-
mance of CellProfiler (CP) [10] and Mask R-CNN, we 
prepared an independently labeled test set, ensuring that 
each view included both DNA and DAP images. After 
generating corresponding masks, we compared the recall, 
precision, F1-score and processing speed among the 
three methods.

Cell segmentation and subcellular structure extraction
We processed the full-field images of DNA and DAP 
using the pre-trained SegNet to predict object boundar-
ies of nuclear and membrane structures. For each object, 
the coordinates of the boundary points were extracted 
to create binary masks with regions with a pixel value of 
1 representing the object boundaries and regions with a 
pixel value of 0 representing the background. To assess 
the correspondence between masks and objects, we 
introduced a custom nucleus-membrane matching algo-
rithm (NMM, Table S2) that determined whether the 
masks of two objects corresponded to the nucleus and 
membrane from the same cell. The masks’ match was 
determined by finding out whether the boundary points 
of one mask were contained within the other while avoid-
ing edge areas of the image. Through this process, we 
obtained the spatial coordinates of the nuclei and cell 
membranes of individual cells in the field of view for the 
extraction of subcellular structures.

Once a match was identified, individual subcellular 
structure images were created by copying pixel values 
from the original images according to the masks. Images 
for DNA, AG, ER, Mito, PM and RNA structures were 
created accordingly. The detailed operations for each 
channel were as follows:

 

ID
j = ID × MD

j

IE
j = IE × (MA

k − MD
j )

IA
j = IA × MA

k

IM
j = IM × (MA

k − MD
j )

IP
j = IP × MA

k

IR
j = IR × MA

k

 (2)

The variables j and k represent the indices of matched 
cell nucleus and membranes, respectively. The variables I 
and M correspond to the image and mask matrix of each 
subcellular structure, with superscripts D, E, A, M, P and 
R representing the DNA, ER, AG, Mito, PM and RNA 
channels, respectively.

Analysis of morphological features in cell painting images
To extract morphological features of each subcellular 
structure and optical characteristics of the images, we 
developed a workflow based on the Scikit-Image library 
(version 0.21.0). Using the DNA mask, such features as 
the nucleus area, perimeter, shape factor, aspect ratio, 
and contour were computed. Using the DAP mask, fea-
tures like the cell area, perimeter, shape factor, aspect 
ratio, and contour were calculated in a similar manner. 
For each of the subcellular structures (DNA, AG, ER, 
Mito, RNA, PM), GLCM properties (contrast, dissimilar-
ity, homogeneity, energy, correlation, ASM) were com-
puted for texture analysis. Additional features including 
granularity and mean intensity were also measured.

Furthermore, we generated a clustered heatmap of the 
normalized data using Seaborn library (version 0.12.2), 
clustering the columns to highlight the correlations 
between different features. We adopted t-Distributed 
Stochastic Neighbor Embedding (t-SNE) to visualize the 
features and to observe the similarity among cells within 
and between different groups.

Customized ResNet-50-based hypoxia scoring network 
(HypoNet)
In this work, we presented a customized HypoNet based 
on ResNet-50, which classified cells as experiencing 
hypoxia or being in a normoxic state. While ResNet-50 
is traditionally designed for three-channel input (RGB 
images), we made a noteworthy adaptation by extending 
it to process input data with six channels (DNA, AG, ER, 
Mito, PM and RNA). As our research focused on a binary 
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classification problem, the output layer was modified to 
2 dimensions, in which the activation function used was 
the sigmoid function. We implemented HypoNet using 
PyTorch (version 1.13.1).

Training of HypoNet
First, we resized the six-channel individual subcellular 
structure images as mentioned above to 224 × 224 pix-
els using the OpenCV library. Additionally, we created 
training (80%) and validation (20%) datasets through a 
random split. The binary cross-entropy loss function 
(BCELoss) was selected as the optimization objective. 
We employed stochastic gradient descent (SGD) as the 
optimization algorithm with a momentum of 0.9 and a 
weight decay of 0.0005.

We normalized input images using the following 
transformation:

 
Y = ( X

255
− 0.5) × 2 (3)

Y : the values of normalized images, and X : the values of 
the original images.

The model underwent 20 epochs of training with an 
initial learning rate of 0.01. The first epoch used a smaller 
learning rate as a warm-up before switching to the initial 
learning rate. The learning rate was reduced by a factor 
of 0.2 at predefined milestones (6, 12, and 18 epochs). 
All training was performed on an environment equipped 
with two NVIDIA GeForce RTX 3090 GPUs.

Evaluation metrics for HypoNet
The performance of HypoNet was assessed using several 
metrics, including accuracy, precision, recall, F1-score, 
and the Area Under the Curve (AUC).

 

accuracy = TP + TN
TP + FP + TN + FP

precision = TP
TP + FP

recall = TP
TP + FN

F1-score = 2 × Recall × Precision
Recall + Precision

 (4)

To validate the superiority of our neural network archi-
tecture, we conducted a comparative analysis on an inde-
pendent test set against four distinct neural network 
structures employed in hypoxia classification models: 
VGG-16, GoogleNet, Xception, and Deep-SeSMo [17]. 
Each network underwent similar modifications and 
training processes using the same dataset and training 
parameters as those used for HypoNet. Post-training, 
we assessed the models’ performance on the test set, 

focusing on metrics mentioned above, to evaluate their 
generalization capabilities.

To visualize the features detected by HypoNet, we 
extracted parameters from the top convolutional layer 
and flattened them into a 2048-dimensional array. Sub-
sequently, t-SNE was employed to cluster these outputs.

Hypoxia scoring for individual cells by HypoNet
The hypoxia score was calculated based on the probabil-
ity of hypoxia, indicating each cell’s likelihood of being 
hypoxic as determined by the outputs of the pre-trained 
HypoNet, at the single-cell resolution. The neural net-
work calculated the probability class of input data using 
the sigmoid function in the output layer:

 
sigmoid: yi = 1

1 + e−xi
 (5)

The average hypoxia score was determined by averaging 
the probabilities of belonging to the hypoxia class across 
all input datasets:

 
hypoxia score =

∑ m
k=1P H

k

m
 (6)

Where m is the number of input datasets, and P H
k  is 

the probability of belonging to the hypoxia class in each 
input dataset.    

3D-alveolus chip model
Chip Preparation
The chips and microfluidic devices (Synvivo Ltd, 
CAT#405001) were designed with a polydimethylsilox-
ane (PDMS) porous membrane, creating two or more 
parallel cavities. Collagen type IV (Sigma, C5533-5MG) 
was infused into the cavities to promote cell attachment 
along the periphery, while the central region permitted 
gas or liquid flow. Capillaries within the porous mem-
branes facilitated the transport of sub-10  μm materials, 
enabling cell-cell interactions and nutrient exchange, 
thereby closely replicating the alveolar-capillary barrier.

Cell culture
A549s (5 ~ 10 × 106 cells/ml) were seeded into the chan-
nels of a collagen-coated chip and placed vertically. After 
the cells adhered to the walls, the chip was inverted, 
and HPMECs (1 ~ 5 × 106 cells/ml) were seeded into the 
lower channel. Once attached, a constant flow of medium 
(0.1 ~ 1  µl/min) was applied to both upper and lower 
channels. Co-culture was carried out for 3 to 7 days, 
with medium change at 3 µl/min daily. Once a confluent 
monolayer of both cell types was formed, drug-contain-
ing medium was introduced to the treatment group chips 
and circulated for 24 h. Gas was slowly introduced into 
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the upper channel, and a mixture of alveolar epithelial 
and endothelial cell media (1:1) was introduced into the 
lower channel and incubated for 24 h at 37 ℃.

Permeability assessment
The permeability of the alveolar-capillary barrier was 
evaluated by measuring the diffusion rate of FITC-Dex-
tran from the lower vascular layer to the upper alveo-
lar channel [27]. After co-culture completion, channels 
were carefully rinsed with serum-free medium at a rate 
of 0.1  µl/min, followed by the introduction of serum-
free medium containing FITC-Dextran solution (Sigma 
Aldrich 46944, 4  kDa, 0.05  mg/mL) at 0.5  µl/min into 
the lower channel of the chip. Fluorescence microscopy 
(Leica, DMi8 C 5400) was used to observe the center of 
the chip. Once the lower channel was filled with dye, the 
flow was stopped, tubes were clamped, and the chip was 
placed in an incubator. After 2  h of static culture, fluo-
rescence images were captured (Ex/Em 485/520 nm), and 
the fluorescence intensities of the upper and lower chan-
nels were calculated using ImageJ.

Immunofluorescence staining
Channels were rinsed with 1× PBS to remove FITC solu-
tion, injected with 4% PFA and placed at room tem-
perature for 15 min to fix cells, followed by incubation 
with immunofluorescence blocking solution (beyotime, 
P0102) for 3  h at room temperature. Antibodies were 
diluted in 1% BSA and incubated with corresponding 
primary antibodies overnight at 4 ℃, followed by sec-
ondary antibodies for 1  h at room temperature. After 
staining with secondary antibodies, cell nuclei were coun-
terstained with 4’,6-diamidino-2-phenylindole (DAPI). 
Confocal imaging was performed (Zeiss LSM980), and 
images were processed using Zeiss Zen 3.8 software.

Cytokine analysis
Cells from both the alveolar and vascular channels of 
each chip were digested, lysed on ice, and the superna-
tant was collected. Concentration of Vascular Endo-
thelial Growth Factor (VEGF) was measured using 
respective human ELISA kits (JINGMEI BIOTECHNOL-
OGY, China) according to the manufacturer’s instruc-
tions. Measured concentration (pg/ml) was converted to 
fold changes relative to the NH group.

Source of animals
Male C57BL/6J mice (8 weeks old, approximately 22  g) 
were purchased from Jiangsu Jicui Yaokang Biotech-
nology Co., Ltd. All mice were bred under standard 
conditions.

The LPS-induced hypoxia experiment
Mice were randomly divided into four groups: Nor-
moxia group (NH, n = 16), Hypoxia group (HY, n = 16), 
Hypoxia + FA group (FA, n = 16), and Hypoxia + RES 
group (RES, n = 16), with a total of 64 mice. For modeling, 
half an hour before hypoxia, 3 mg/kg of LPS was intra-
peritoneally injected, followed by placement in a hyper-
baric oxygen chamber simulating an altitude of 7000  m 
for 24 h. Drug administration involved daily intraperito-
neal injections of the respective drugs for one week prior 
to hypoxia; the NH and HY groups received an equiva-
lent volume of saline. The concentrations of the adminis-
tered drugs were RES at 30 mg/kg (Aladin, R107315) and 
FA at 100 mg/kg (Merck, F809521).

Detection of inflammatory factors in Bronchoalveolar 
lavage fluid (BALF)
A midline incision was made along the trachea of the 
mouse, and 1 mL of pre-cooled PBS was slowly intro-
duced into the trachea, allowed to stay for 2–3  s, and 
withdrawn. This process was repeated three times. The 
collected BALF was centrifuged at 5000 rpm for 10 min 
at 4  °C, and the supernatant was harvested and stored 
at -80 °C until further use. The concentrations of TNF-α 
(Jingmei, JM-02415M2), IL-6 (Jingmei, JM-02446M2), 
and VEGF (Perlay, AZ0626) in the supernatant were 
measured using ELISA kits according to the manufactur-
er’s instructions.

Pulmonary permeability
One hour before the end of the scheduled hypoxia expo-
sure, mice were injected with 200 µL of 2% Evan’s Blue 
dye (YuanYe Bio, S19046) via the tail vein and continued 
to be exposed to hypoxia. After the hypoxia exposure, 
mice were euthanized by cervical dislocation, and 40 mL 
of saline was perfused through the right lobe of the heart 
to remove the dye from the blood vessels. The entire lung 
tissue was then excised, weighed, and rinsed in ice-cold 
saline. The tissue was divided into two parts: one was 
wrapped in foil and dried, and the other was homog-
enized in 10% PBS. The homogenate was incubated with 
three times the volume of formamide (SCR, 81007718) at 
60  °C for 24 h, then centrifuged at 6000× for 15 min at 
4  °C, or at 12,000 rpm for 10 min. The supernatant was 
collected, and the absorbance was measured at 620  nm 
using a microplate reader. Permeability results were 
expressed as the value of absorbance (OD620) per gram of 
dry weight.

Western blot analysis
Fifty milligrams of lung tissue were homogenized, and 
each sample was lysed with 220 µL of lysis buffer. The 
supernatant was collected and denatured, and protein 
was quantified by a Bicinchoninic acid kit. The proteins 
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were separated by electrophoresis and transferred onto 
a PVDF membrane (Millipore, IPVH00010). The mem-
brane was incubated overnight at 4 °C with primary anti-
bodies against IL-6, TNF-α, VEGF-A, and GAPDH (all 
at a 1:1000 dilution). After being washed with TBST buf-
fer (LABLEAD, T7209B), the membrane was incubated 
with the corresponding secondary antibody (1:5000 dilu-
tion) at room temperature for 120  min. After another 
wash with TBST buffer, ECL detection was performed. 
The images were scanned, and grayscale analysis was 
conducted using ImageJ software, with GAPDH as the 
internal control for quantitative analysis. All primary 
antibodies are listed in Table S3.

Hematoxylin and Eosin (H&E) staining
After the tissues were removed from formalin solution, 
they were embedded in paraffin. The tissues were stained 
using H&E staining and evaluated under a light micro-
scope. The severity of pathological responses in the lungs 
included alveolar congestion, hemorrhage, neutrophil 
aggregation or leukocyte infiltration, and thickness of the 
alveolar wall.

Statistical analysis
Statistical analysis was performed using SciPy (version 
1.10.1) and Graphpad Prism (version 9.0.0). When con-
ducting differential analysis of morphological features 
for each group, the Kruskal-Wallis test was applied. Dun-
nett’s correction was employed for multiple testing, con-
sidering features with corrected p-values below 0.05 as 
significantly different. When comparing the average val-
ues among multiple groups, the standard deviation (SD) 
was used as a measure of intra-group variation.

Results
Dual segmentation of nuclear and membrane structures 
using SegNet
We acquired a total of 101,706 full-field cell images 
through the processes of drug administration, hypoxia 
culture, staining, and imaging. Each field of view con-
tained six channels: DNA, ER, AG, Mito, PM, and RNA. 
To train the SegNet for individual cell detection and seg-
mentation, we engaged three experts to manually anno-
tate two datasets. The NS set consisted of 500 full-field 
DNA images for nucleus segmentation, while the MS 
set contained 500 full-field DAP images for membrane 
segmentation (Fig.  1A). These images were part of the 
Training Group collection. Both datasets contain approx-
imately equaled quantities of A549 and HPMEC images. 
From these two datasets, 100 images from 50 views were 
randomly selected as the test set, while the remaining 
data were input into the SegNet for training. The train-
ing set comprises a total of over 18,000 DAP objects and 
10,000 DNA objects (Fig. 1B).

During training, we employed data augmentation tech-
niques such as scaling, rotation, and cropping of images 
(Fig. 1C). In the initial batches, our model demonstrated 
effective detection and segmentation of partial objects 
(Fig.  1D). As training progressed, the model’s metrics 
exhibited perfect convergence. On the validation set, 
the model achieved a precision of 0.971, recall of 0.977, 
mAP@0.5 of 0.990, and mAP@0.5:0.95 of 0.938 (Fig. 1E). 
The F1-confidence curve of segmentation task was highly 
smooth, achieving its highest point at a confidence level 
of 0.4 with a peak value of 0.97, suggesting that the model 
demonstrated remarkable stability (Fig.  2A). The confu-
sion matrix showed that out of 1856 DAP objects in the 
validation set, 1822 were correctly identified, and out 
of 1376 DNA objects, 1356 were correctly recognized. 
Moreover, there were no instances of confusion between 
DNA and DAP, indicating that SegNet was capable of 
precisely identifying and classifying the majority of 
objects (Fig. 2B). These results demonstrated that SegNet 
could accurately detect, classify, and segment both nuclei 
and cell membranes from full-field Cell Painting images.

Comparison of image segmentation performance: AI vs. 
CellProfiler
To compare the effectiveness of SegNet, manual segmen-
tation, and traditional segmentation methods such as 
CellProfiler (CP), we applied each method to segment the 
same image in the test set. The results indicated that our 
SegNet and manual segmentation performed similarly in 
terms of precision. Both achieved better segmentation of 
cell nuclei and membranes than CP (Fig. 2C). Due to the 
limitations of its principles, CP may incorrectly identify 
some pixels that do not belong to cell objects as part of 
cells. When cells were closely connected, SegNet exhib-
ited superior segmentation performance compared to 
CP (Fig. 2D). Taking manual segmentation results as the 
ground truth, we compared various metrics (including 
recall, precision, F1-score) for the task of NS and MS (i.e., 
classifying pixels) by AI and CP on the test set. It was 
observed that except for DNA recall, our model’s perfor-
mance in NS and MS was superior to CP (Fig. 2E). CP’s 
advantage in DNA recall mainly stems from its threshold 
segmentation strategy, leading to a decrease in precision, 
i.e., a high number of false-positive results. In terms of 
processing speed, our model demonstrated an impressive 
performance in that each image was analyzed in an aver-
age of only 22.2 milliseconds, compared with 110 milli-
seconds by Mask R-CNN, 1327 milliseconds by CP, and 
about 20 min by manual segmentation (Fig. S3).

Morphological analysis of subcellular structures in hypoxia 
based on NMM
To extract the subcellular structure images, we first iden-
tified the object boundaries of nuclear and membrane 
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Fig. 1 Comprehensive overview and performance of SegNet. A. Schematic diagram of the input and neural network structure of the SegNet. The input 
comprises two types of full-field images: DNA and DAP (integration of DNA, AG, and PM images). The red polygons in the images represent the manu-
ally annotated object boundaries. B. Histogram showing the total number of DAP and DNA objects contained in the training data, with the depth of 
color indicating the quantity. C. Display of training images after data augmentation processing. The masks and numbers indicate the masks of manually 
annotated object regions and their categories (0 for DAP, 1 for DNA), and the box is the smallest object boundary box automatically calculated from the 
mask. D. Initial phase of training, showing the model’s object recognition and segmentation effects. The mask, box, letters, and numbers represent the 
mask of the object area recognized by the model, the boundary box, the object category label, and the probability, respectively. E. Training and validation 
performance of SegNet. Solid lines represent the real data trend, while dashed lines represent the trend after smoothing
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Fig. 2 Evaluation of the cell segmentation models. A. F1-Confidence curve of SegNet on the validation set. The curve depicts the F1-scores of the model 
across various confidence thresholds for identifying different objects, demonstrating the balance between precision and recall. B. Confusion matrix of 
the SegNet on the validation set. Rows represent the categories predicted by the model, while columns represent the actual categories. Each cell’s value 
indicates the number of samples for the corresponding combination of predicted and actual categories. Values on the main diagonal show the correct 
predictions for each category, while off-diagonal values indicate incorrect predictions. C. The segmentation results obtained through manual, AI, and CP 
methods respectively. D. A detailed comparative visualization of these three segmentation methods. The top row showcases the results of NS, and the 
bottom row features the outcomes of MS. E. Evaluation of the three segmentation methods at the pixel level for NS and MS tasks on the test set
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structures for single cells from full-field DNA and DAP 
images by employing our proposed nucleus-membrane 
matching algorithm (NMM). Subsequently, we generated 
individual subcellular structure images from full-field 
images based on the respective masks (Eq. 2), including 
DNA, AG, ER, Mito, PM, and RNA channels (Fig. 3A).

We then produced a new set of A549 Cell Painting 
data to verify our proposed method. This set included 
846 full-field cell images under four oxygen concentra-
tion conditions (NH, 5% O2, 3% O2, and 1% O2). Using 
NMM, we obtained 56 morphological features of 6535 
cells. The heatmap analysis indicated a high consistency 
in the measurement patterns of similar metrics. Further-
more, a number of these metrics showed variations that 
closely aligned with the gradient shifts in oxygen concen-
tration among different groups (Fig.  3B). Volcano plot 
analysis indicated that compared to the NH group, the 
5% O2 group exhibited the most significant changes in 
mitochondrial morphology (Fig. 3D, S4A), while the 3% 
O2 group showed significant changes in mitochondria, 
RNA, and cell membrane (Fig.  3E). Moreover, all mor-
phological features in the 1% O2 group underwent sig-
nificant changes (Fig. S4B). However, a significant degree 
of variability was observed among cells within individual 
groups (Fig. 3B). The t-SNE visualization of these features 
highlighted a progressive alteration in the morphologi-
cal characteristics of the cell population correlated with 
the decreasing levels of oxygen concentration (Fig.  3C). 
These findings vividly illustrated the impact of oxygen 
concentration on the morphological features of cells, 
indicating the practicality of performing drug screening 
grounded on changes in cellular phenotypes.

HypoNet: evaluating and decoding cellular responses to 
hypoxia
We trained HypoNet, designed for hypoxic cell classi-
fication, using a training dataset that included 150,696 
images of subcellular structures from 8,830 A549s and 
16,286 HPMECs as the negative set, along with 87,390 
images from 6,011 A549s and 8,554 HPMECs under 1% 
oxygen conditions as the positive set from the Training 
Group (Fig. 4A). The model reached convergence around 
the 16th epoch, with accuracy, precision, recall, F1-score, 
and AUC all exceeding 0.97 on the validation set (Fig. 4B, 
S5). The output of the trained HypoNet was a non-linear 
prediction with two values, indicating either normoxic 
(0) or hypoxic [1].

To evaluate the generalization capability of our Hypo-
Net, we conducted performance assessments on two 
independent test sets. The first comprised 2930 nor-
moxic (NH) A549s and 4802 A549s treated with 1% O2. 
The second set included 2809 NH HPMECs and 3813 
HPMECs also treated with 1% O2. These data sets were 
entirely independent of the training set. Additionally, 

we compared the model’s performance with that of four 
other state-of-the-art (SOTA) neural network architec-
tures. The results indicated that our HypoNet model 
outperformed the other four SOTA neural network 
architectures (VGG-16, GoogleNet, Xception, and Deep-
SeSMo) on A549s, achieving an accuracy of 84.7%, recall 
of 81.9%, precision of 96.7%, F1-score of 88.7%, and an 
AUC of 0.808. In HPMECs, HypoNet showed even more 
remarkable performance, with an accuracy of 88.9%, 
recall of 87.4%, precision of 96.7%, F1-score of 91.8%, and 
an AUC of 0.856. In contrast, other models demonstrated 
significantly lower performance on HPMECs, especially 
the Deep-SeSMo model, which showed the lowest accu-
racy of 42.9% and an F1-score of 33.7% (Table 1).

To investigate the cellular response to hypoxia and the 
relationship with the intensity of hypoxic stress induc-
tion, we input subcellular structure images of the four 
groups of A549s mentioned in the previous section into 
HypoNet, and visualized parameters of the top convolu-
tional layer using t-SNE (Fig. 4C). The results showed that 
the distribution of top layer parameters exhibited a more 
pronounced trend than morphological features (Fig. S7). 
This suggested that our HypoNet was more sensitive in 
capturing the morphological alterations in cells induced 
by hypoxia. Furthermore, it indicated that the cellular 
response to hypoxic conditions could be quantitatively 
measured in a way that corresponded with the intensity 
of the stress. We then employed HypoNet to conduct 
hypoxia scoring on the identical dataset. In an interest-
ing observation, the hypoxia scores were almost binary at 
the single-cell level in the training set, either around 0 or 
1. Yet, a more nuanced picture emerged when comparing 
the average scores across the four groups: they reflect the 
gradation in hypoxia induction strength (Fig. 4D).

Subsequently, we conducted a second investigation 
of the cellular morphological alterations under various 
hypoxic conditions and proceeded to assess the interpret-
ability of the HypoNet. The observations revealed signifi-
cant morphological transformations in the mitochondria 
of cells with high hypoxia scores, shifting from elongated 
filamentous structures to more rounded and fragmented 
forms, with a tendency to cluster around the cell nucleus. 
Additionally, signals of dispersed vesicular structures 
were observed as dispersed bright spots in channels such 
as PM, likely indicating the activation of autophagy as 
an adaptive survival mechanism in response to hypoxic 
stress (Fig. 4E) [28]. Our model effectively identified such 
signals in cells with higher hypoxia scores, while they 
were rarely present in cells with very low hypoxia scores 
(Fig. S8). These findings not only revealed a close correla-
tion between hypoxia scores and cellular morphological 
responses but also suggested the potential applicability of 
HypoNet in drug screening.
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Fig. 3 Extraction and measurement of subcellular structures. A. Overview of the process for extracting 6 types of subcellular structures. B. A heatmap 
of 56 morphological features for 6535 cells exposed to varying levels of oxygen concentration. The heatmap displays the normalized values of cell mor-
phological features. The groups to which the cells belong are annotated in the bar on the left side. Results of feature clustering are marked at the top of 
the figure. C. T-SNE visualization of the distribution of cell morphological feature space. The morphological feature data of all cells are reduced to two-
dimensional space and displayed in a coordinate system, with cells from different groups represented in different colors. D, E. Volcano plots showing the 
differences in morphological features between the 5% O2 group vs. NH group, and the 3% O2 group vs. NH group, respectively. Red indicates features with 
significant differences. NH indicates normoxia group
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Exploring drug efficacy against HAPE via HypoNet
To further validate the practicality of HypoNet, we 
meticulously selected 11 agents with potential anti-
hypoxic effects at the cellular level for drug screen-
ing. These agents included tetramethylpyrazine (TMP), 

tanshinone IIA (TS IIA), salvianolic acid B (SAL B), sal-
vianolic acid C (SAL C), 20(S)-ginsenoside Rh2 (RH2), 
acetazolamide (ACE), catechin, resveratrol (RES), ferulic 
acid (FA), compound Danshen dripping pills (DSDW), 
and Hongyi capsules (HYJN). Although previous reports 

Fig. 4 Construction of deep-learning based HypoNet. A. Design and training framework of HypoNet. The input data is six-channel single-cell images. The 
dashed box contains a representative residual block structure of ResNet-50, of which there are 16 in the network. f1 represents Eq. 3, along with a 7 × 7 
convolutional layer and pooling layer. f2 denotes the top pooling layer and the fully connected layers. f3 signifies the argmax function. B. Training loss, 
validation accuracy and AUC of HypoNet, where the light color represents the original curve, and the dark color represents the curve after smoothing. C. 
Visualization using t-SNE of the weights of the top convolutional layer of HypoNet flattened after inferencing on A549s treated with four different hypoxia 
stress levels. D. Hypoxia score distribution calculated by HypoNet for A549s treated with four different hypoxia stress levels. Dashed lines represent the 
average hypoxia score of different oxygen concentration groups. E. Cell Painting images depicting morphological alterations in A549s under normal and 
5% O2 hypoxic conditions, as identified using HypoNet. The average scores are calculated by taking the mean of all cell scores determined by HypoNet 
within full-field image
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indicate potential anti-hypoxic or anti-altitude sickness 
effects of these agents, their role in mitigating HAPE, 
especially regarding the permeability of the alveolar-
capillary barrier during the cellular hypoxic response in 
the lungs, remains to be explored [1]. Considering the 
extremity of hypoxic conditions used in the pre-trained 
model, we chose 5% O2 as the stress condition for drug 
screening to ensure the reversibility of cellular hypoxic 
responses and comparability of hypoxia fractions. By 
comparing the average hypoxia scores of the NH group, 
NH group, and 11 different hypoxia treatment groups, 
we screened for agents that protected against morpho-
logical alterations induced by hypoxia. Through mul-
tiple rounds of dosing and Cell Painting, we collected 
more than 15,000 full-field images of A549s and 18,000 
full-field images of HPMECs. Using SegNet and NMM, 
we successfully extracted over 160,000 subcellular struc-
ture images of A549s and 180,000 subcellular structure 
images of HPMECs. All these images had a resolution of 
1080 × 1080 and were not used in training previously.

After preprocessing, these subcellular structure images 
were fed into HypoNet for hypoxia scoring, and we sub-
sequently computed the average hypoxia score for all cells 
in each respective group (Fig.  5A, B). The results indi-
cated that the hypoxic response in A549s was alleviated 
after treatment with FA, RES, SAL C, and DSDW com-
pared to the HY group. In contrast to A549s, HPMECs 
were more sensitive to the drugs, with all agents except 
Acetazol showing some degree of anti-hypoxic effect, 
possibly due to their nature as normal rather than tumor 
cells. We selected agents effective for both cell types, 
including FA, RES, SAL C, and DSDW, as candidate anti-
HAPE agents.

Ex vivo effects of the candidates in 3D-alveolus chip 
models
To validate the reliability of our proposed drug screening 
method, we used OoC technology to compare the effects 
of top and bottom drugs identified through screening. 
We focused on three monomers effective for both cell 
types (FA, RES, and SAL C) and drug ineffective for both 

cell types (ACE) for validation, based on the hypoxia 
scores. In order to simulate the human alveolar-capillary 
barrier, we cultivated A549s and HPMECs on opposite 
sides of the chip to represent the lung epithelium and 
microvasculature, together constituting an alveolus chip. 
The integrity of this barrier was successfully detected 
using immunofluorescence staining for cadherins and 
tight junction proteins (Fig.  5C). On this basis, we per-
formed three-dimensional reconstruction of the confocal 
images on the chip, providing a more intuitive observa-
tion of cell growth and adhesion (Fig.  5D). The images 
from different perspectives clearly demonstrated our suc-
cessful replication of the human alveolar-capillary barrier 
(Fig. 5E, F).

To assess the protective effects of FA, RES, SAL C and 
ACE on the alveolar-capillary barrier, we analyzed the 
permeability of lung chips post-treatment. Our findings 
revealed that hypoxia alone could lead to increased per-
meability of the alveolar-capillary barrier, even without 
a mechanical cause [4]. Furthermore, FA, RES, and SAL 
C significantly reduced permeability compared to the HY 
and ACE groups (Fig. 5G, S9), suggesting that these com-
pounds were effective in mitigating damage to the alveo-
lar-capillary barrier caused by hypoxia, and validating the 
predictive capability of HypoNet for this effect. Further, 
we attempted to investigate how these drugs influenced 
the permeability of the air-blood barrier. We selected 
VEGF, a key modulator of alveolar-capillary barrier per-
meability particularly in lung injury scenarios as a target 
to explore the mechanisms by which these three mol-
ecules protected the air-blood barrier permeability [29]. 
The cytokine analysis results indicated that within our 
alveolus chips, FA, RES, and SAL C markedly decreased 
the expression of VEGF in A549 and HPMECs when 
exposed to hypoxic conditions, while ACE was somewhat 
less effective (Fig.  5H, I). These results highlighted the 
significant role that FA, RES, and SAL C played in influ-
encing key regulators that maintained the integrity of the 
alveolar-capillary barrier such as VEGF during hypoxic 
conditions, thereby offering a protective strategy against 
HAPE.

Table 1 Performance comparison of HypoNet against other neural network architectures on two independent test sets
Sets Model Accuracy (%) Recall (%) Precision (%) F1-score (%) AUC
A549 HypoNet 84.7 81.9 96.7 88.7 0.808

VGG-16 78.7 75.0 98.7 85.2 0.723
GoogleNet 82.6 79.2 97.5 87.4 0.778
Xception 78.7 76.0 95.9 84.8 0.731
Deep-SeSMo 71.4 72.4 87.3 79.1 0.663

HPMEC HypoNet 88.9 87.4 96.7 91.8 0.856
VGG-16 75.9 73.4 98.2 84.0 0.667
GoogleNet 81.9 78.7 98.6 87.5 0.750
Xception 79.6 77.2 97.1 86.0 0.723
Deep-SeSMo 42.9 67.3 22.4 33.7 0.513
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FA and RES generated good protective effects against LPS-
induced HAPE in mouse model
Next, we evaluated the protective effects of FA and RES 
in vivo using an LPS-induced HAPE mouse model. 
As shown in Figs.  6A and 66% of mice treated with 
LPS and living in a hypoxic chamber (HY group) died 
within 24  h. In comparison, the survival rates were sig-
nificantly increased to 100% after FA treatment, as in the 
NH group. Also, RES increased the survival rate to 67%. 
Besides, a notable decrease in body weight was observed 
in HY. FA and RES treatment considerably alleviated the 
body weight loss induced by LPS and hypoxia exposure 

(Fig. 6B). To further evaluate the effect of FA and RES on 
pulmonary permeability, the absorbance of Evan’s Blue 
dye in lung tissues was measured. Significant increases 
in pulmonary permeability, as indicated by higher OD620 
values, were detected in HY mice. In contrast, FA and 
RES treatments reduced pulmonary permeability to the 
level close to that of the NH group (Fig.  6C, D). More-
over, FA and RES treatments markedly reduced the con-
centrations of proinflammatory cytokines (VEGF, IL-6, 
and TNF-α) in the BALF of mice in the NH group, high-
lighting their anti-inflammatory effects (Fig. 6E-G). Addi-
tionally, Western blot analysis was performed to detect 

Fig. 5 HypoNet-based drug screening and alveolus chip validation. A, B. Hypoxia score distribution calculated by HypoNet for A549s and HPMECs under 
various agent interventions. Except for the NH group, all other groups were cultured in a 5% O2 environment. White solid lines represent the average hy-
poxia score for different groups, while the red dashed line represents the average hypoxia score for the 5% O2 (HY) group, which is used as a threshold for 
drug screening. C. Immunofluorescent staining of A549 and HPMECs co-cultured on an OoC under normal oxygen level, displaying channels for Zonula 
Occludens-1 (ZO-1), Epithelial Cadherin (E-cadherin), Vascular Endothelial-cadherin (VE-cadherin), and DAPI, along with a merged image. D-F. 3D recon-
structed confocal images shown from different angles of the alveolus chip, illustrating the adhesion and growth of alveolar epithelium (A549) and pulmo-
nary microvascular endothelium (HPMEC) cells. G. The effect of different treatments on the ratio of average fluorescence intensity between endothelial 
and epithelial cells (n = 3). The data in each bar indicate the ratio of Relative Fluorescence Units (R). This ratio is derived from measuring the fluorescence 
of FITC-dextran as it diffuses into the epithelial channel, from the endothelial channel. H, I. Expression of VEGF measured by ELISA in A549s and HPMECs 
within the alveolus chip under a 5% O2 environment (HY) and treated with FA, SA L C, RES and ACE (n = 3). Values are expressed as fold changes relative to 
the NH group (mean ± SD). The data were analyzed by one-way ANOVA. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05 vs. HY group; ns no significance
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cytokine expressions and alveolar capillary permeability 
in lung tissues, and found that FA and RES treatments 
resulted in a notable reduction in the levels of IL-6, TNF-
α, and VEGF (Fig.  6H-K, S10, S11). Finally, histological 

analysis using H&E staining revealed that the pulmo-
nary tissue of the HY group exhibited destroyed alveo-
lar structure, thickened alveolar walls, and extravasated 
fluid into alveolar cavity (Fig.  6L). In contrast, FA and 

Fig. 6 (See legend on next page.)
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RES treatments mitigated these changes, preserving lung 
tissue architecture and reducing inflammation. These 
results collectively demonstrated that FA and RES effec-
tively protected against LPS-induced HAPE by preserv-
ing pulmonary permeability, reducing inflammation, and 
maintaining alveolar-capillary barrier integrity.

Discussion
Given the complexity of HAPE’s mechanisms and the 
ambiguity surrounding therapeutic targets, phenotypic 
drug screening has emerged as a promising strategy for 
discovering anti-HAPE drugs. Despite the availability of 
advanced technologies like Cell Painting, deep learning, 
and OoC, each holding potential for advancing this field, 
effective strategies for their integrated utilization in drug 
screening remain limited. In this study, we established a 
deep learning-driven pipeline (CPHNet) for screening 
anti-HAPE agents based on morphological alterations 
identified through Cell Painting, which introduced the 
3D-alveolus chip and animal models as validation tools 
for screening results.

Initially, we developed SegNet for the dual segmenta-
tion of nucleus and membrane structures from multi-
channel full-field cell images. CellProfiler (CP) is a 
software widely used for downstream analysis of Cell 
Painting images. It employs threshold segmentation to 
distinguish objects (cells) from the background by defin-
ing a pixel intensity threshold. Pixels with intensities 
above the threshold are considered part of the object 
(cell), while those below are treated as the background. 
Adjusting the threshold size can control the outcome of 
cell segmentation. However, this process requires sub-
stantial expertise and experimentation and may not 
always achieve the desired results. In contrast, our deep-
learning-based SegNet requires no manual intervention. 
This model is capable of rapidly and accurately segment-
ing cells based on the morphological information in full-
field images, while automatically filtering out noise. The 
evident superiority of our deep-learning-based model 
over CP in segmenting cell nuclei and membranes high-
lights the advantages of AI for computer vision (CV) 
tasks. Furthermore, the comparison of processing speeds 

between AI and other methods is striking. The efficiency 
of SegNet in analyzing images, compared to CP and 
manual methods, is indicative of the capability of AI to 
drastically reduce the time required for biomedical image 
identification.

Subsequently, we innovatively introduced six-channel 
Cell Painting images into HypoNet, a refined deep neu-
ral network designed for end-to-end feature assessment 
and phenotypic classification. The novelty of this idea is 
its ability to comprehensively uncover diverse substruc-
tural changes in cells, mitigating potential interference 
arising from their coexistence in the same channel. When 
compared with other neural network architectures, we 
observed that while shallow neural networks like Deep-
SeSMo are effective in low-resolution single-cell image 
recognition [17], deeper neural networks are more adept 
at avoiding underfitting, especially with sufficient high-
content cell images derived from Cell Painting techniques 
(Fig. S6). However, this binary framework presents limi-
tations, particularly in failing to capture the varying 
degrees of cellular hypoxia induction, a detail that could 
be paramount in contexts like drug screening. Intrigu-
ingly, we observed that while responses at the individual 
cell level may seem binary, an analysis at the population 
level unveils a more subtle and gradated response that 
correlates with the intensity of hypoxic stress. Addition-
ally, the distinctive distribution patterns in the top layer 
parameters of HypoNet suggest that our model is adept 
at detecting subtle variations in cellular responses to dif-
ferent levels of hypoxic stress. This underscores the supe-
riority of deep learning over traditional image analysis 
techniques in decoding complex biological phenomena, 
confirming our hypothesis. Furthermore, the hypoxia 
scoring method base on HypoNet provides a quantita-
tive tool for assessing the extent of hypoxia in cells, offer-
ing invaluable insights for research fields such as drug 
screening, where a comprehensive understanding of cel-
lular responses to hypoxia is essential.

Finally, we applied our proposed CPHNet to evaluate 
11 agents, successfully identifying FA, RES, and SAL C 
with potential effectiveness against HAPE. These three 
drugs have been previously reported to have anti-hypoxia 

(See figure on previous page.)
Fig. 6 FA and RES effectively alleviated LPS-induced HAPE in vivo. A. Survival rates of mice treated with NH (n = 12), HY (n = 12), FA (n = 12), and RES 
(n = 12), *p < 0.05 and ***p < 0.001, by two-tailed Chi-square test. B. Changes in body weight (mean ± SD) of mice treated with NH (n = 12), HY (n = 4), FA 
(n = 12), and RES (n = 8) before and after the experiment. C, D. 2% Evan’s Blue dye was administered via tail vein injection. One hour later, lung homog-
enates were incubated with formamide, centrifuged, and the supernatant’s absorbance at 620 nm was measured to determine tissue permeability, pre-
sented as OD620 per gram of dry weight, ****p < 0.0001 by one-way ANOVA. E, F, G. Mice (n = 6 per group) were euthanized after hypoxia exposure, and 
the concentrations of VEGF, IL-6, and TNF-α in the BALF were measured using ELISA kits (mean ± SD), **p < 0.01 and ****p < 0.0001 by one-way ANOVA. 
H-K. Lung proteins were analyzed by Western blot to detect markers of inflammation and alveolar capillary permeability using corresponding antibodies 
(n = 3 per group). GAPDH was used as an internal control, **p < 0.01, ***p < 0.001 and ****p < 0.0001 by one-way ANOVA. Molecular weight markers are 
shown on the right. Data were obtained from two independent experiments. L. Mice (n = 4 per group) were euthanized after hypoxia exposure, and lung 
tissues were collected for analysis. Representative images of histological analyses of lung tissues by H&E staining (scale bar = 100 μm). Magnified views of 
the boxed regions for each image are shown below (scale bar = 20 μm). Green arrows indicate pink patches suggesting inflammation and extravasation 
of fluid into lung tissue
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effects [30–32]. However, reports on the effectiveness of 
these three drugs in protecting against HAPE are limited. 
This study reveals that FA and RES exhibit potent protec-
tive activity both ex vivo and in vivo. Specifically, in the 
3D-alveolus chip model (ex vivo), both FA and RES sig-
nificantly preserved the integrity of the alveolar-capillary 
barrier under hypoxic conditions. In the mouse model 
(in vivo), these agents not only improved survival rates 
but also reduced pulmonary edema and inflammation, as 
indicated by decreased levels of pro-inflammatory cyto-
kines and reduced pulmonary permeability. Our find-
ings highlight the potential of FA and RES as therapeutic 
agents for HAPE, emphasizing the importance of further 
clinical investigations to fully understand their protective 
mechanisms and optimize their usage in high-altitude 
medicine.

These results demonstrate that deep neural networks 
(DNNs) can significantly simplify the Cell Painting analy-
sis workflow. By leveraging these advanced methods, it’s 
possible to quickly and accurately extract phenotypic 
information from cell images, far surpassing the capa-
bilities of traditional threshold segmentation methods 
like CP. The utilization of DNNs significantly surpasses 
simple machine learning methods in both enhancing the 
precision of feature extraction and deepening the under-
standing of variations in cellular morphology. In fact, this 
new paradigm of drug discovery can be extended to other 
complex diseases, as long as suitable in vitro and in vivo 
models can be identified.

While our study illustrates the potential of an AI-driven 
approach to identify anti-HAPE agents, several inherent 
limitations must be acknowledged. First, the effectiveness 
of the identified agents was evaluated primarily under 
controlled laboratory conditions, which may not fully 
capture the complex physiological environment encoun-
tered at high altitudes. Second, our deep learning mod-
els rely heavily on the quality and diversity of the training 
data, and their ability to generalize to untested conditions 
or different cell types remains to be thoroughly evaluated. 
Moreover, although A549 cells are widely used in pulmo-
nary research for their capacity to mimic certain aspects 
of alveolar epithelial function, they are derived from a 
lung adenocarcinoma and may exhibit altered responses 
to hypoxia compared with primary alveolar epithelial 
cells. This factor could potentially influence the morpho-
logical features observed in our study. To advance toward 
clinical application, several steps are necessary. Col-
laboration with clinicians and researchers in mountain 
medicine will be crucial for translating these findings into 
preventive strategies or treatments for individuals at risk 
of HAPE. Additionally, expanding our AI model dataset 
to include a wider range of cell types and hypoxic con-
ditions could improve model robustness and applicabil-
ity to various altitude-related health issues. Finally, future 

studies should consider using primary alveolar epithelial 
cells or other non-cancerous cell lines to validate our 
findings and ensure broader generalizability.

Conclusions
In summary, we developed and trained a deep learning–
based drug screening pipeline, CPHNet, to automatically 
detect morphological changes in Cell Painting images, 
potentially aiding in the identification of agents for HAPE 
intervention. Although this study marks an important 
step in applying phenotypic drug discovery approaches to 
HAPE, it should be viewed as part of an ongoing process 
rather than a definitive solution. By integrating advanced 
deep learning models with Cell Painting and OoC meth-
ods, our work offers tools to address challenges tradition-
ally faced by pharmacologists, such as improving both 
the precision and efficiency of drug screening and further 
elucidating mechanisms of drug action. Consequently, 
this study contributes to the evolving field of drug discov-
ery while suggesting new avenues for tackling complex 
pharmacological questions.
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