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Abstract
Introduction Fibrotic cocktail (FC) is a combination of pro-fibrotic and pro-inflammatory mediators that induces 
early fibrotic changes in organotypic lung models. We hypothesised that transforming growth factor beta 1 (TGF-β1) 
alone induces a pro-fibrotic effect similar to FC. Our aim was to compare the pro-fibrotic effects of TGF-β1 with FC in 
human precision-cut lung slices (PCLS).

Methods PCLS from “healthy” lung tissue of cancer patients undergoing surgery (n = 7) were incubated with TGF-β1, 
FC or control for 72 h. Gene expression markers for myofibroblasts differentiation, extracellular matrix (ECM), as well as 
TGF-β receptors were assessed (RT-qPCR). ECM proteins expression in lysates and supernatant was assessed by ELISA 
and immunofluorescence.

Results We found that TGF-β1 significantly increased gene expression of ACTA2, COL1A1, CCN2, and VIM compared 
to control but also compared to FC. FC showed a significant increase of matrix metalloproteinase (MMP) 7 and 1 
compared to control, while TGF-β receptor 2 was lower after FC compared to TGF-β1 or control. FC or TGF-β1 showed 
similar fibronectin protein expression in lysates and supernatants, while type I collagen protein expression in lysates 
was significantly greater with TGF-β1 compared to control.

Conclusions Our findings show that TGF-β1 induces consistent pro-fibrotic changes in PCLS after 72 h. Compared 
to TGF-β1, FC treatment resulted in reduced gene expression of TGF-β receptor 2 and increased MMPs expression, 
potentially mitigating the early pro-fibrotic effects. Selecting specific pro-fibrotic stimuli may be preferable depending 
on the research question and time point of interest in lung fibrosis studies using PCLS.
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Introduction
Fibrosing interstitial lung diseases (ILD) are a subset of 
ILDs that can present with a progressive phenotype lead-
ing to early mortality [1]. Idiopathic pulmonary fibrosis 
(IPF) is the most severe form of lung fibrosis without 
inflammation, resulting in the rapid decline of lung func-
tion [2]. Most ILDs are characterized by inflammation 
and fibrosis, making them crucial targets for therapy 
[3]. Increasingly, it is recognized that treatable traits 
may be more important in guiding treatment than the 
specific ILD diagnosis itself [4]. For personalised treat-
ment strategies research models are needed that allow 
the investigation of specific pathomechanisms, includ-
ing inflammatory and fibrotic stimuli in combination and 
separately.

The molecular pathomechanism of lung fibrosis 
involves several pro-fibrotic factors, such as platelet-
derived growth factor (PDGF), fibroblast growth factor 
(FGF) [5], lysophosphatidic acid (LPA) [6, 7], and con-
nective tissue growth factor (CTGF) [8], that favour an 
abnormal wound healing response and the development 
of lung fibrosis [9]. These mediators influence excessive 
extracellular matrix (ECM) deposition, impaired cell 
apoptosis or increased senescence, which contribute to 
sustained scarring and fibrosis progression [10].

Organotypic models including PCLS have provided 
valuable information about the dynamic interaction 
between mesenchymal cells and the ECM [11], or about 
the crosstalk between alveolar fibroblasts and epithelial 
cells mediated by the transforming growth factor beta 1 
(TGF-β1) and non-canonical Wnt pathway [12]. Fibrosis 
induction in human PCLS has been optimised by various 
strategies including the addition of matrix metallopro-
teinase (MMP) inhibitors to TGF-β1 to improve collagen 
deposition [13], the combination of TGF-β1 with platelet 
lysate or neutrophil extracellular traps [14].

Alsafadi et al. suggested a specific fibrotic cocktail (FC), 
that combines TGF-β1 with two pro-fibrotic mediators, 
PDGF and LPA, and one pro-fibrotic but also inflamma-
tory cytokine, tumour necrosis factor (TNF), to repro-
duce the physiological changes observed in the early 
stages of lung fibrosis [15]. The choice of stimuli resulted 
from current knowledge about fibrosis mediator in lung 

fibrosis [5, 7, 16]. Notably, the authors state, that the role 
of TNF in IPF remains incompletely understood [15]. 
Among all pro-fibrotic factors, TGF-β1 and its signalling 
pathway represents the major stimulus for the errone-
ous and permanent repair response in lung fibrogenesis 
[16]. TGF-β1 is equally a common mediator in fibrosis of 
other organs [17]. Compared with other fibrotic stimuli, 
such as PDGF, TGF-β1 promotes a greater ECM produc-
tion as shown by pro-peptides of type I and type III col-
lagens [18]. In PCLS, TGF-β1 increases ECM deposition 
and has been used to study anti-fibrotic drugs [19].

FC-induced fibrosis in PCLS is used by various 
research groups including ours and has led to remarkable 
progress in lung fibrosis research resulting in numerous 
publications [20–24]. Comparison of the gene expression 
in FC stimulated PCLS with IPF stages, FC recapitulates 
46% of the observed in vivo changes across all stages. Of 
these, 11% overlapped with the stage 1–specific signature 
in IPF, indicating that FC treated PCLS best recapitulates 
the molecular processes that occur in early IPF [25].

As a limitation of this model, we observe like Alsafadi 
et al. that some donors respond differently to FC [15]. 
This is independent of clinical characteristics and pos-
sibly due to tissue specific or interindividual suscepti-
bilities [15]. To minimize factors involved in treatment 
response variations, we hypothesise that TGF-β1 alone 
may sufficiently induce some of the fibrotic changes in 
PCLS. This study compared TGF-β1 with FC induced 
fibrosis in a PCLS model of normal-appearing human 
lung tissue from cancer patients undergoing surgery.

Methods
PCLS generation
Human control lung tissues (n = 7) were collected from 
normal appearing lung areas of lung cancer resec-
tions from patients undergoing surgery at the uni-
versity hospital, Inselspital, Bern (Ethical approval 
KEK-BE_2024 − 01841). All patients signed written con-
sent prior sample collection. The patients’ characteristics 
and diagnoses are summarised in Table 1.

Lung tissues (ca. 10  g) were processed to generate 
PCLS (400  μm thick, ∅ 4  mm) to ensure homogene-
ity and reproducibility between replicates, following 

Table 1 Patient characteristics
Donor Age (yr.) Sex Smoking status Diagnostic
1 68 F unknown NSCLC
2 70 M unknown NSCLS
3 54 M unknown metastatic melanoma
4 59 M current smoker NSCLC
5 46 M 25PY, current smoker lung metastasis
6 73 M 50PY NSCLC, COPD
7 64 F 50PY NSCLC
COPD: chronic obstructive pulmonary disease; F: female; M: male, NSCLC: non-small cell lung cancer; PY: pack-year index
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established standard protocols [22]. PCLS were treated 
with FC (5 ng/ml TGF-β1, 10 ng/ml PDGF-AB, 10 ng/
ml TNF, and 5 µM LPA) [15] or 5 ng/ml TGF-β1 only in 
DMEM supplemented with 0.1% FBS for 72  h. Control 
PCLS were treated with medium and reagents’ diluents. 
The medium was changed every day. PCLS (4–6 sam-
ples per donor) and supernatant were collected for pro-
tein and gene expression analysis. Supplemental Table 1 
shows the analysis performed in each donor sample.

RNA isolation and gene determination
Total mRNA, cDNA synthesis reverse-transcription 
reactions and RT-qPCR were performed following our 
modified previously reported protocol [22]. The gene 
expression of ACTA2, FN1, COL1A1, COL3A1, CCN2, 
VIM, MMP7, MMP1, TGFBR1, TGFBR2, and B2M as 
housekeeping were quantified by real-time PCR with Fast 
SYBR™ Green Master Mix (#4385616, Thermo Fisher Sci-
entific). The primer sequences are displayed in Supple-
mental Table 2 [22, 26].

Protein isolation
PCLS were mechanically disrupted in TissueLyser II 
(Qiagen) and protein lysate were obtained following 
previous protocols [22]. Total protein was quantified by 
Pierce™ BCA protein assay (#23227, Thermo Fisher Sci-
entific) and the samples were stored at -80 °C until use.

ELISA
Human pro-collagen I alpha 1 and human fibronectin 
were measured in the supernatant and protein lysate 
from PCLS by ELISA kit (#DY6220-05 and #DY1918-
05, respectively, R&D Systems), following the manufac-
turer’s protocol. Dilution determination for the control 
and treated samples was performed before total sample 
analysis. The total amount of type I collagen (pg/ml) and 
fibronectin (ng/ml) in the protein lysate (µg/ml) was 
assessed by dividing the respective ELISA values by the 
total protein content measured by BCA protein assay.

Immunofluorescence
Fixed PCLs were immunostained for human fibronectin 
EDA domain, with DAPI as counterstaining, following 
previous published protocols [22]. LSM files were pro-
cessed in Fiji image processing package v1.54f (ImageJ, 
USA), and the Integrated density (IntDe, in arbitrary 
units, AU) was subsequently calculated from the posi-
tive fluorescent areas of each picture in order to estimate 
the fluorescence intensity, by following the formula: FN 
IntDen = Sample IntDen – Negative control IntDen.

Statistical analysis
All results are shown as mean ± standard deviations. 
Comparisons between groups were assessed by repeated 

measures one-way ANOVA with Tukey’s as post hoc test. 
Statistical analysis was performed with GraphPad Prism 
10 (Insight Partners, USA). Statistical significance was 
assumed when p < 0.05.

Results
TGF-β1 induces gene expression for fibrotic markers in 
PCLS
The results revealed that TGF-β1 significantly increased 
the gene expression of the myofibroblast differentia-
tion marker ACTA2 compared to control (p < 0.01) and 
FC (p < 0.05) (Fig.  1A). In addition, mRNA levels of 
ECM components such as fibronectin extra domain A 
(FN-EDA) (p < 0.0001), type I and III collagen (COL1A1 
(p < 0.0001), COL3A1 (p < 0.05)), connective tissue growth 
factor (CCN2), and vimentin (VIM), were significantly 
upregulated in PCLS after the addition of TGF-β1 com-
pared to control and FC.

Compared to control (p < 0.01) and TGF-β1-treated 
PCLS (p < 0.05), FC-treated PCLS presented increased 
mRNA levels of MMP7 and MMP1 (Fig.  1A), suggest-
ing increased ECM remodelling. FC influenced gene 
expression of TGF-β receptors, especially TGF-β recep-
tor 2 (TGFBR2); FC-stimulated PCLS showed lower 
expression than control PCLS (p < 0.05) and those stimu-
lated with TGF-β1 alone (p < 0.01, Fig. 1A), whereas the 
expression of TGF-β receptor 1 (TGFBR1) was higher 
in TGF-β1-treated PCLS compared to FC-treated PCLS 
(p < 0.05).

TGF-β1 induces protein expression of fibronectin and 
collagen in tissue lysates and supernatants
PCLS lysates analysed by ELISA revealed that, fibro-
nectin in TGF-β1 treated PCLS increased similar to FC 
stimulation, while collagen production was significantly 
greater in PCLS stimulated with TGF-β1 compared to 
control (p < 0.05, Fig. 1B).

We observed that supernatants of FC and TGF-β1 
treated PCLS showed similar significant increase of fibro-
nectin and type I collagen compared to control (p < 0.05 
and p < 0.01, respectively; Fig. 1C).

Finally, we stained PCLS for FN-EDA. By semi-quan-
titative analysis of fluorescence intensity, we found that 
compared to control, TGF-β1 significant increased fibro-
nectin in PCLS (p < 0.05, Fig. 1D).

Discussion
The need for new anti-fibrotic drugs calls for various 
advanced models to better evaluate pathomechanisms 
and test drug candidates in preclinical studies, aiming 
to improve outcome in clinical trials [27]. PCLS carry 
the biological complexity of the lung, allowing for drug 
testing while considering effects on different lung cell 
types [28]. Modelling early fibrotic changes with this 
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Fig. 1 Fibrotic marker expression in PCLS treated with a fibrotic cocktail (FC) or TGF-β1 alone. (A) Gene expression of the myofibroblast marker ACTA2, 
the ECM markers EDA-FN1, COL1A1, COL3A1, CCN2, and VIM, the ECM remodelling genes MMP7 and 1, and the TGF-β receptors TGFBR1 and R2 72 h after 
treatment with FC or TGF-β1 alone. The gene results are presented as relative gene expression (RGE) to that of the housekeeping gene B2M and were nor-
malised to control (Ctrl) condition. (B) Concentrations of total fibronectin and type I collagen in PCLS lysate were measured by ELISA. (C) Fibronectin and 
type I collagen release in supernatants (SN) was measured by ELISA. (D) Immunofluorescence staining revealed that the protein content of fibronectin 
extra domain A (FN-EDA) was similar between FC and TGF-β1, as shown by the semi-quantification with IntDen (arbitrary units, AU). Pictures obtained at 
10X magnification. (─) = 500 μm. (*) p < 0.05; (**) p > 0.01, (***) p < 0.001, (****) p < 0.0001
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organotypic model by adding FC to human lung tissue 
has been an important step for fibrosis research. Our 
results suggests that the major pro-fibrotic cytokine 
TGF-β1 can induce significant fibrotic changes, including 
protein changes in fibronectin and collagen. In selected 
studies, TGF-β1 might be sufficient to investigate fibrosis 
for specific questions, while FC remains a more complex 
model for early lung fibrosis.

While some non-significant results after FC stimula-
tion might be due to interindividual response variability 
of the tissue in our hands, we speculate that these results 
could also suggest interference of FC components with 
TGF-β1 signalling and potentially influence the fibrotic 
response in the ex vivo model through its receptor reg-
ulation [29]. For example, TGFβR2 gene expression was 
decreased after FC compared to control and TGF-β1, 
whereas the gene encoding TGFβR1 was significantly 
higher in TGF-β1-treated PCLS compared to FC. Due 
to the positive feedback loop between TGF-β1 and its 
receptors, an increase compared to control would have 
been expected [30]. Moreover, in previous studies, TNF 
reduced TGFβR2 protein expression in fibroblasts from 
systemic sclerosis (SSc) donors at a concentration of 10 
ng/ml after 48 h [31]. This might suggest a role for TNF 
in our finding of reduced TGFβR2 gene expression after 
FC, which contains TNF.

The controversial role of TNF in lung fibrosis high-
lights the complex relationship between inflammation 
and fibrosis in the fibrotic lung. While some reports have 
shown that TNF promotes myofibroblast differentiation 
of lung resident mesenchymal stem cells [32], and that 
TNF polymorphisms are associated with fibrotic hyper-
sensitivity pneumonitis (HP) [33]; others have shown 
that TNF might have therapeutic uses in the treatment 
of lung fibrosis, by targeting the pro-fibrotic activity of 
macrophages [34]. A study showed that the overexpres-
sion of TNF in transgenic mice protected the animals 
from the development of bleomycin-induced lung fibro-
sis [35]. Moreover, unlike TGF-β1 stimulation, the treat-
ment of alveolar fibroblasts with TNF fails to induce 
the expression of some markers of fibrotic phenotype 
(i.e., COL1A1+; collagen triple helix repeat containing 
1, CTHRC1+; periostin, POSTN+) [36] and actively pro-
motes collagen degradation by MMPs in isolated human 
lung fibroblasts [37]. In IPF patients, TNF serum levels 
were not significantly different compared to healthy con-
trols [38], and immunostaining did not reveal differences 
in TNF+ cells between control lung tissue and normal-
appearing lung parenchyma from IPF patients [39]. This 
underlines the intricate interplay between inflammatory 
stimuli in a pro-fibrotic environment.

The dynamic interplay TNF and TGF-β1 has been also 
described in the bleomycin-induced lung fibrosis model, 
where TNF and MMP showed their major expression 

during the inflammatory phase, being progressively 
reduced during the fibrotic phase, where TGF-β1 effects 
dominate [40]. In bronchial epithelial cells, TNF activates 
MMPs via transcription factor nuclear factor (NF)-kappa 
B [41]. Our results revealed increased gene expression 
of the MMP7 and MMP1 in FC-treated PCLS compared 
to TGF-β1 and controls. Overexpression of MMPs was 
associated with ECM restructuring and spontaneous 
emphysema in transgenic mice overexpressing TNF [42]. 
MMP-mediated ECM disassembly [43] might occur in 
PCLS treated with FC containing TNF. Interestingly, 
Khan et al. reported that the addition of MMP inhibitor 
to TGF-β1-treated PCLS resulted in increased collagen 
deposition [13].

Despite the observed increase of collagen production 
in the protein lysate of FC-treated PCLS, no statistically 
significant difference compared to control was observed. 
This may be due to half of the donors showing less than 
a 2-fold change in collagen content after FC treatment, 
while a consistent response to TGF-β1 was observed in 
most of the PCLS donors compared to control. Increased 
levels of MMP-1 after FC and not TGF-β1, might influ-
ence collagen at the post-transcriptional level explaining 
our findings [44] and suggest that some components of 
the FC may interfere with collagen deposition at this time 
point.

Overall, our protein results revealed significant changes 
in fibronectin in FC- and TGF-β1-treated PCLS com-
pared to controls. Protein and gene expression results 
suggest that, in addition to TGF-β1, other components 
of the FC might enhance expression of fibronectin, as it 
has been described for PDGF [5] or for TNF [45]. In our 
hands, this did not lead to significant increases of fibrosis 
induction comparing FC to TGF-β1.

In fixed tissue (250 μm-thick slices) analysed with sec-
ond-harmonic imaging microscopy by Khan et al. did not 
reveal increased deposition of fibrillar collagen in PCLS 
after TGF-β1 stimulation after 13 days [13]. In contrast 
and in parallel to our study, Roach et al. demonstrated 
that type I and II collagens were upregulated following 
7 days of TGF-β1 treatment in an ex vivo lung model by 
immunostaining and transcriptomic analysis [19, 46].

Our findings confirm the efficacy of FC to induce early 
fibrotic changes, while our results suggest a comparable 
response after TGF-β1. We suggest that depending on 
the experimental set up and analysis, single use of TGF-
β1 can be a simplified way to induce fibrotic changes in 
PCLS.

Our study has limitations. Treatment for 3 days does 
not give information about later time points. While pre-
vious studies using FC have commonly adopted 120  h 
incubation times for readouts [15, 20, 21, 23], our study 
focuses on early fibrosis induction. Longer-term stud-
ies would be needed to determine how pro-fibrotic 
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effects evolve over time in both models. In addition, our 
experimental settings including medium replacement 
volume and times are modified from those in the origi-
nal report of FC induced fibrosis in PCLS [15]; this does 
not allow the direct comparisons of our results with this 
previous publication. Our study did not evaluate interac-
tions between TGF-β1, PDGF, TNF or LPA to evaluate 
potential agonistic or antagonistic effects of FC compo-
nents. While the literature supports an antagonistic rela-
tionship between TGF-β1 and TNF [34, 35, 40], future 
experiments in PCLS exploring the interplay between 
inflammation and fibrosis will be necessary. Further 
investigation of the interaction between individual FC 
components would be interesting, although beyond the 
scope of this short report. Future characterization of cell-
type specific changes by RNA sequencing will be essen-
tial to broaden our understanding and pinpoint the key 
mechanisms and cells involved in the potential interac-
tions between individual FC components.

Conclusions
In summary, our results confirm that TGF-β1 reliably 
triggers a fibrotic response, reducing sample variability 
and allowing focused investigation of this molecule. The 
model’s simplicity supports consistent readouts, while 
complex models may offer insights into broader interac-
tions in fibrosis.
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