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Abstract
Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders 
lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease 
management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin 
being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the 
deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of 
early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD). In this work, we 
demonstrate the binding of PEG-FUD to the fibrotic lung throughout the course of bleomycin-induced murine 
model of pulmonary fibrosis. We first analyzed the binding of radiolabeled PEG-FUD following direct incubation 
to precision cut lung slices from mice at different stages of experimental lung fibrosis. Then, we administered 
fluorescently labeled PEG-FUD subcutaneously to mice over the course of bleomycin-induced pulmonary fibrosis 
and assessed peptide uptake 24 h later through ex vivo tissue imaging. Using both methods, we found that 
peptide targeting to the fibrotic lung is increased during the fibrogenic phase of the single dose bleomycin lung 
fibrosis model (days 7 and 14 post-bleomycin). At these timepoints we found a correlative relationship between 
peptide uptake and fibrotic burden. These data suggest that PEG-FUD targets fibronectin associated with active 
fibrogenesis in this model, making it a promising candidate for a clinically translatable molecular imaging probe to 
non-invasively determine pulmonary fibrosis disease activity, enabling accelerated therapeutic decision-making.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a progressive and 
irreversible form of interstitial lung disease (ILD) with 
median survival duration of 2 to 5 years after diagnosis 
[1, 2]. In addition to IPF, other ILDs, including hypersen-
sitivity pneumonitis, nonspecific interstitial pneumonia 
and connective-tissue related ILDs, may develop into 
progressive disease described by worsening respiratory 
symptoms, decline in lung function, increasing fibrosis 
on high resolution computed tomography (HRCT), and 
premature mortality [3]. The absence of reliable non-
invasive biomarkers for early detection of active disease 
progression is a major hurdle in the care of patients with 
these diseases. Current methods for assessing disease 
progression, including HRCT and pulmonary function 
tests, can only provide retrospective monitoring of dis-
ease activity by comparing tests from months prior [4, 5]. 
Development of biomarkers with high fidelity to disease 
activity is a major need in the field, with active research 
into characteristic transcriptional, proteomic, and meta-
bolic signatures that predict disease progression [6–8]. 
An ideal biomarker for progressive pulmonary fibrosis 
would provide unique, real-time information about that 
disease state (activity level), offering additive information 
to currently utilized methods that are able to ascertain 
overall fibrotic burden.

In addition to traditional biospecimen-based biomark-
ers, imaging biomarkers are a potentially advantageous 
approach to non-invasively probe disease processes, such 
as aberrant disease mechanisms, including enhanced 
glucose metabolisms [9–11], cellular activity [12–16], 
and extracellular matrix (ECM) deposition [17–20]. 
Since ECM deposition is a hallmark in the development 
of fibrosing disorders, molecular imaging probes that 
target mechanisms of ECM deposition hold promise 
for detection of disease activity. In particular, the ECM 
glycoprotein fibronectin (FN) plays a pivotal role in the 
development of pulmonary fibroses, where it serves as 
a key regulator in the deposition of collagen and other 
ECM components [21–24]. Its high and differential 
upregulation in fibrotic tissues, especially in the ECM 
producing fibroblastic foci in IPF, and the association of 
elevated FN levels with pulmonary fibrosis disease pro-
gression, mark it as a potentially useful target to monitor 
clinical disease activity [6, 23–25].

The functional upstream domain (FUD, also known 
as pUR4), is a 6-kD peptide derived from Streptococcus 
pyogenes F1 adhesin that has high binding affinity to the 
N-terminus of FN and shows promise as a molecular 
probe to target FN in the context of pulmonary fibrosis 
[19, 26, 27]. By modifying FUD with 20-kD polyethylene 
glycol (PEG), while preserving its nanomolar affinity for 
the N-terminal 70-kD domain of FN, we have improved 
its stability and circulation time, thereby enhancing its 

ability to target FN-rich areas in fibrotic tissues  in vivo 
[28–30]. Our previous work demonstrated the capac-
ity of PEG-FUD to serve as a molecular imaging probe 
for pulmonary fibrosis [19]. However, the dynamics of 
lung uptake of PEG-FUD during different phases of lung 
fibrosis development and resolution are unknown. There-
fore, this holds implications for the utility of the probe 
in eventual clinical practice. Here, we characterize the 
differential targeting of our peptide during the tempo-
ral evolution of the bleomycin-induced murine model 
of pulmonary fibrosis by determining both direct bind-
ing of radiolabeled PEG-FUD on precision cut lung slices 
(PCLS) from fibrotic lungs and localization of fluores-
cently-labeled peptide in ex vivo lung tissues 24 h after in 
vivo delivery (Fig. 1).

We show that PEG-FUD probe uptake is increased 
during the fibrogenic phase of bleomycin-induced lung 
fibrosis and that the level of peptide targeting correlates 
with overall fibrosis during these stages. These findings 
provide further support for the use of PEG-FUD as a 
probe for early disease activity in lung fibrosis, addition-
ally validating its potential translation to clinical use, 
where it could offer pulmonary care teams more detailed 
and accurate insight into patients’ disease status and the 
need for therapeutic intervention. Portions of this data 
have previously been presented in abstract form [31–33].

Methods
Study design
Our study was designed to determine the binding capac-
ity of our FN-targeting peptide, PEG-FUD, over the 
course of bleomycin-induced pulmonary fibrosis (Fig. 2). 
Based on our previous findings with IPF tissue ex vivo, 
we hypothesized that PEG-FUD may target the fibro-
genic phase in this model [19]. Thus, we first prepared 
and analyzed the PEGylated peptide, followed by radio-
labeling with 64Cu, to quantify its uptake ex vivo in PCLS 
derived from mice at different phases of the bleomycin-
induced model. Second, we performed single dose toxic-
ity studies, ensuring that our peptide did not result in any 
adverse effects. Given the encouraging results from these 
studies, we finally administered the fluorescently labeled 
peptide (Cy5-PEG-FUD) to mice in vivo, followed by 
quantification of uptake in mouse lungs, as well as other 
relevant organs during the bleomycin model. Mice were 
randomly selected for group placement. Investigators 
blinded to the treatment groups selected the samples and 
performed image analysis.

Peptide synthesis, characterization and reporter 
conjugation
FUD peptide and the control mutant FUD (mFUD), with 
alterations to significantly reduce the peptide’s binding 
affinity to FN [34], were recombinantly produced using 
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BL21 E. coli (DE3) and the pET-ELMER vector, as before 
[28–30]. Peptide purification was done using fast protein 
liquid chromatography (FPLC) with a HiTrap Q HP col-
umn (Cytiva, Marlborough, MA, USA) producing a sin-
gle peak for FUD and mFUD. The binding affinity of FUD 

and mFUD for FN was assessed by competitive enzyme 
linked immunosorbent assay (ELISA) using 0.5 nM bio-
tinylated FUD (b-FUD) along with varying concentra-
tions of unlabeled FUD and mFUD (2000, 1000, 500, 250, 
125, 62.5, and 0 nM) and absorbance was subsequently 

Fig. 1 Study experimental design. Bleomycin was intratracheally delivered to mouse lungs to induce fibrosis, characterized by increased fibronectin 
expression. PEGylated FUD (PEG-FUD) peptide targets the N-terminal 70 kDa region of fibronectin and has been examined as an imaging probe for pul-
monary fibrosis. To understand the temporal uptake of PEG-FUD in the bleomycin-induced model of pulmonary fibrosis, two approaches were utilized 
at various time points throughout this model. Top: precision-cut lung slices from fibrotic mouse lungs were incubated with radiolabeled peptide ([64Cu]
Cu-PEG-FUD) and radioactivity was quantified via gamma counting and autoradiography. Bottom: Fluorescently labeled peptide (Cy5-PEG-FUD) was de-
livered to mice subcutaneously, followed by relevant organ ex vivo IVIS fluorescence imaging and signal quantification. Figure was created in BioRender.
com
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measured at 405 nm using a microplate reader to quan-
tify the binding affinity, as previously described [27, 30, 
35]. Next, the FPLC-purified FUD or mFUD peptides 
were N-terminally conjugated with a 20-kDa methoxy-
PEG-propionaldehyde (NOF America Corporation, 
White Plains, NY, USA), as previously described [28, 30]. 
The PEG-conjugated peptides were purified using FPLC 
and PEGylated peptide identity was confirmed using 
MALDI-TOF analysis [28, 30]. The concentration of the 
PEG-FUD and PEG-mFUD conjugates were determined 
by measuring the absorbance at 280  nm, utilizing the 
specific extinction coefficients (ε) value for FUD (0.496) 
and mFUD (0.742). Purified PEGylated peptides were 
conjugated with appropriate reporters, including p-SCN-
Bn-NOTA (NOTA; Macrocyclics, Dallas, TX, USA) or 
sulfo-Cy5-NHS-ester (Lumiprobe, MD, USA), as pre-
viously described [30, 36, 37]. To enable radiolabeling, 
PD-10 columns (Cytiva, Marlborough, MA, USA) were 

used to purify NOTA-PEG-FUD from unconjugated 
NOTA. 64Cu was produced using published methods 
by the University of Wisconsin GE PETtrace Cyclotron 
[38]. Subsequently, 50–150 µg of NOTA-FUD was mixed 
with 37–111 MBq (1–3 mCi) of 64Cu in 200 µL of 0.1 M 
sodium acetate buffer (pH 5.5) for 60 min at 37 °C. Radio-
labeled peptides were purified using PD-10 columns. The 
specific activity was approximately 50 µg of peptide per 
1 mCi of 64Cu. Radio-thin layer chromatography per-
formed at the end of the incubation time demonstrated 
over 90% of radiochemical yield. For fluorescent labeling, 
mono-labeled Cy5-PEG-FUD conjugates were isolated by 
ion-exchange chromatography (FPLC). Concentrations of 
the Cy5-PEG-FUD and Cy5-PEG-mFUD conjugates were 
determined by measuring the absorbance at 646 nm.

Fig. 2 [64Cu]Cu-PEG-FUD targeting fibrotic PCLS peaks during the fibrogenic phase of bleomycin-induced pulmonary fibrosis. Mice were intratracheally 
treated with bleomycin (2 U/kg, IT) or normal saline control. Mouse lungs were sectioned into precision cut lung slices (PCLS) and incubated with radio-
labeled peptides ([64Cu]Cu-PEG-FUD or [64Cu]Cu-PEG-mFUD control). (A) PCLS generated 14 days after treatment with bleomycin or normal saline (NS) 
were stained against fibronectin (FN) and PEG. Scale bar = 100 μm. (B) Autoradiography was performed and representative images are displayed with 
signal adjusted based on normal saline (NS) + [64Cu]Cu-PEG-FUD controls at each time point. (C) Radioactivity on PCLS was quantified via gamma count-
ing. Counts per minute (CPM) were divided by the area and normalized based on NS + [64Cu]Cu-PEG-FUD control signal at each time point. n ≥ 2 mice/ NS 
groups and n ≥ 2 slices/mouse NS groups. n ≥ 3 mice/ bleomycin groups and n ≥ 1 slices/mouse in bleomycin groups. Data are represented as mean ± SD
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Bleomycin-induced pulmonary fibrosis
Animal experiments were approved by the Institutional 
Animal Care and Use Committee (IACUC) at the Univer-
sity of Wisconsin-Madison (protocol numbers M005823 
and M005532), which is accredited by the Association 
for Assessment and Accreditation of Laboratory Ani-
mal Care. Male and female mice (8–15 weeks old) on a 
C57Bl/6J background were anesthetized with ketamine 
(100 mg/kg; Zoetis Inc., Parsippany-Troy Hills, NJ, USA) 
and xylazine (15  mg/kg; Akorn Pharmaceuticals, Lake 
Forest, IL, USA) by intraperitoneal injection and admin-
istered a single intratracheal (IT) dose of bleomycin (2 
U/kg, Hospira, Lake Forest, IL, USA was used for PCLS 
studies and 1 U/kg TEVA, Tel Aviv, Israel was used for 
the remaining studies) in 50 µL of 0.9% normal saline irri-
gation (NS; Baxter, Madison, WI, USA) or NS alone for 
non-injured controls, as we have done before [19, 39–41]. 
Mice were caged separately corresponding to experimen-
tal group. At experimental end-point, mice were anesthe-
tized via intraperitoneal delivery of ketamine (200  mg/
kg) and xylazine (30 mg/kg) and exsanguinated prior to 
tissue collection.

Precision cut lung slices
PCLS processing and analysis was performed based on a 
protocol we previously developed [19]. Briefly, bleomy-
cin or NS-treated mouse lungs were inflated with warm 
low melt agarose (IBI Scientific, Dubuque, IA, USA) in 
phenol-red-free Dulbecco’s modified Eagle’s medium 
(DMEM; Corning Inc., Corning, NY, USA) supplemented 
with antibiotics (Penicillin-Streptomycin-Amphoter-
icin (PSA), Corning Inc.:  streptomycin (100  µg/ml), 
amphotericin B (250 ng/ml), penicillin (100 U/ml), 2 
mM l-glutamine (Corning Inc.), and 10% fetal bovine 
serum (HyClone, Buckinghamshire, UK). Lungs in ice-
cold supplemented phenol-red-free DMEM media were 
sequentially sectioned, and subsequently washed at 37 °C 
prior to incubation with 5 µCi of [⁶⁴Cu]Cu-PEG-FUD (or 
[⁶⁴Cu]Cu-PEG-mFUD) for a final peptide concentration 
of 25 nM at 37 °C for 1 h and 45 min. After incubation, 
slices were washed and subjected to gamma counting 
using the WIZARD2 (PerkinElmer, Shelton, CT, USA) 
and then mounted on glass slides for autoradiography 
(PerkinElmer). Gamma counts per minute (CPM) were 
divided by the area of each PCLS manually outlined in 
ImageJ and subsequently normalized to the normal saline 
+ [⁶⁴Cu]Cu-PEG-FUD control condition. At each time 
point, after ensuring normal distribution, signal from dif-
ferent groups was compared using the One-Way ANOVA 
with Šídák post-hoc test. PCLS were fixed in 4% parafor-
maldehyde for 20–30 min, washed and stored in PBS at 
4 °C before immunofluorescence staining.

Tissue imaging
Imaging of relevant organs following in vivo adminis-
tration of Cy5-PEG-FUD or Cy5-PEG-mFUD was per-
formed in the University of Wisconsin-Madison Carbone 
Cancer Center Small Animal Imaging and Radiotherapy 
Facility via the In Vivo Imaging System (IVIS, Spectral 
Instruments Imaging, Tucson, AZ, USA), as we have pre-
viously done [29]. Injection mixture of 1.5% Cy5-labeled 
PEGylated peptide and 98.5% of corresponding unlabeled 
PEGylated peptide, at a mass dose of 12.5 mg/kg (52.08 
nmol) of peptide equivalent was subcutaneously deliv-
ered to separate cohorts of mice 3-, 7-, 14-, 21-, 28-, or 
42-days post IT bleomycin or NS administration. One 
day later, mouse organs, including blood, heart, lung, 
kidney, and liver, were harvested prior to IVIS imag-
ing. Imaging conditions included: excitation of 640  nm 
and emission of 680 nm, medium binning, 2 F/Stop and 
22.4 cm field of view were used for each imaging session 
with epi-fluorescence scale bars normalized to the same 
intensity (5 × 107 to 5 × 108). Images were analyzed using 
Living Image Software (PerkinElmer) by manually outlin-
ing each organ and quantifying total radiant efficiency. 
At each time point, normality was tested via the Kol-
mogorov-Smirnov test and signal from each organ was 
compared between different groups using the One-Way 
ANOVA with Šídák post-hoc test (following log10 trans-
formation for non-normally distributed data).

Histology
Lungs collected from mice administered Cy5-PEG-FUD 
or Cy5-PEG-mFUD control were inflated with 10% for-
malin (Fisherbrand, Pittsburg, PA, USA) and fixed for 
24–48 h before being transferred to 70% ethanol, paraffin 
embedded, and sectioned. Lung tissue from select mice 
were subjected to Masson’s trichrome staining (N = 1 nor-
mal saline/time point and N = 4 bleomycin/time point) 
or staining with anti-FN antibody (RamFN, rabbit poly-
clonal antibody to mouse FN, diluted at 1:10,000 dilu-
tion [42]) and HRP-conjugated secondary antibody (N = 3 
normal saline total and N = 1–2 bleomycin/time point), 
followed by scanning with the Aperio Digital Pathology 
Slide Scanner System and digital visualization using Ape-
rio ImageScope (Leica Biosystems, Wetzlar, Germany). 
As previously described, modified Ashcroft scoring of 
trichrome stained lung tissue was performed to grade 
the severity of bleomycin induced pulmonary fibrosis 
[40, 41, 43]. Briefly, snapshots (N ≥ 68 per mouse, 20x 
magnification) systematically covering the lung paren-
chyma were taken and scored by two blinded observers. 
Scores were averaged between observers and averaged 
scores were plotted as a percentage and stratified based 
on score severity, 0–3 (mild), 4–5 (moderate), and 6–8 
(severe). Average score per animal was plotted against ex 
vivo lung total radiant efficiency. Normality was tested 
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using the Kolmogorov-Smirnov test and non-normally 
distributed data was normalized through log10 transfor-
mation before applying linear regression. Residual plots 
were then visually examined to check for any violations 
of model assumptions, such as non-linearity or unequal 
variance, ensuring the appropriateness of the regression 
model. Quantification of FN histology was performed 
by obtaining 0.6X magnification images of each sample, 
isolating the brown stain using the ImageJ Immunohis-
tochemistry Toolbox plug-in, inverting the image, outlin-
ing the lung and measuring integrated density. Integrated 
density was divided by the total lung area to account for 
potential differences in lung size, as before [39]. Data was 
normality tested before linear regression was applied.

Fixed PCLSs previously incubated with radiolabeled 
peptides were co-immunostained using antibodies 
against FN (rabbit polyclonal antibody, ab2413, Abcam, 
Cambridge, UK), PEG (rabbit monoclonal antibody, 
ab51257, Abcam) and appropriate secondary antibodies 
followed by fluorescence signal amplification with Tyra-
mide signal amplification substrates (PerkinElmer). Sub-
sequent imaging was done on Leica Thunder Imaging 
System (Leica Biosystems). The same parameters were 
used for imaging all of the conditions and subsequent 
image enhancement.

Blood analysis
Mice were treated with a single dose of PEG-FUD, PEG-
mFUD (1.56, 3.125, 6.25, 12.5, or 25  mg/kg) or equal 
volume of PBS vehicle administered via subcutaneous 
delivery. One day later, blood was collected for complete 
blood count (CBC) and complete metabolic panel via 
cardiac puncture, aliquoted into either an ethylenediami-
netetraacetic acid (EDTA)-coated tube (CBC) or Lithium 
Heparin-coated tube (chemistry analysis). CBC analysis 
of whole blood was performed on Zoetis Vetscan HM5 
(Zoetis Services LLC, Parsippany, NJ, USA) within eight 
hours of collection. Plasma was collected by centrifug-
ing heparinized whole blood (4000 RPM for ten minutes 
at room temperature), loaded into the Preventative Care 
Profile Plus rotors (Zoetis #10023238) and subjected to 
analysis via Zoetis Vetscan VS2 (Zoetis Services LLC).

The data analysis was conducted to compare the 
effects of PEG-FUD, PEG-mFUD, and vehicle treatments 
across various analytes at multiple dose levels. Incom-
plete observations (e.g.: analytes with readings below 
detection in all animals, such as eosinophil and basophil 
counts) were not analyzed. For each group, the normal-
ity of data distribution was assessed using the Shapiro-
Wilk test, which was bypassed if a group had fewer than 
three observations or showed zero variance, followed 
by Levene’s test for homogeneity of variance between 
groups and a subsequent Student’s t-test. If variances 
were unequal, Welch’s t-test was used. In cases where the 

normality assumption was violated, the non-parametric 
Mann-Whitney U test was applied.

Statistical analyses
Data are presented as mean ± standard deviation. One 
Way ANOVA with Šídák post-hoc test was used for com-
parisons between multiple groups. For correlative analy-
ses, linear regression method was used to fit the data. 
P ≤ 0.05 was considered statistically significant.

Results
Synthesis and PEGylation of purified PEG-FUD/ PEG-mFUD 
peptides
We recombinantly produced FUD and mutated FUD 
(mFUD) and confirmed expected binding activity (Fig-
ure S1A). We subsequently conjugated the peptides with 
20 kD PEG, separated the fractions from unreacted pep-
tides, unreacted PEG, and multi-PEGylated peptides to 
isolate mono-PEGylated FUD or mFUD (Figure S1B). 
The successful purification of mono-PEGylated FUD 
was confirmed by MALDI/TOF mass spectrometry (Fig-
ure S1C). In all subsequent studies, we utilized mono-
PEGylated FUD or mFUD (referred to as PEG-FUD and 
PEG-mFUD hereafter), whether alone or conjugated with 
corresponding reporters, which are anticipated to retain 
nanomolar affinity for FN, as previously demonstrated by 
our team [28, 30].

Temporal binding of [⁶⁴Cu]Cu-PEG-FUD to fibrotic mouse 
PCLS
The bleomycin model of pulmonary fibrosis is character-
ized by distinct temporal phases, including early injury 
and inflammation (~ day 2–7), leading to fibrogenesis 
(~ day 7–14) that is followed by a phase of established 
fibrosis (~ day 28) and subsequent resolution. Recently, 
Strunz and colleagues examined the single-cell lung 
transcriptome over the course of bleomycin-induced 
pulmonary fibrosis [44]. Using their publicly available 
interactive web tool, we found that FN expression in 
fibroblasts, cells responsible for depositing FN into ECM, 
peaks around day 10 post-bleomycin injury (Fig. 3) [44]. 
These findings are consistent with other studies that 
show the peak of FN matrisome within a similar period 
post-bleomycin injury [45].

We have previously shown that [⁶⁴Cu]Cu-PEG-FUD 
preferentially binds to fibrotic mouse PCLS eleven days 
following bleomycin instillation, during the phase of 
extensive fibrogenesis [19]. However, it is not known how 
uptake of [⁶⁴Cu]Cu-PEG-FUD changes with respect to 
each of the distinct phases of bleomycin-induced injury 
and fibrosis. Thus, we initially sought to investigate the 
temporal changes in [⁶⁴Cu]Cu-PEG-FUD binding to 
mouse PCLS isolated from discrete timepoints over 
the course of bleomycin-induced model of pulmonary 
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Fig. 3 Fibronectin expression in bleomycin-induced lung fibrosis. Single cell RNA sequencing data set taken from the Gene Expression Omnibus interac-
tive webtool by Strunz and colleagues [43]. (A) Fibronectin expression in the whole lung cell type signature with red arrow pointing to ECM-mediating 
fibroblasts/myofibroblasts. (B) Fibronectin expression in fibroblasts using whole lung time course differential expression (Spline regression p = 0.032)
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fibrosis. Freshly isolated mouse PCLS from different 
phases of the model were incubated in PCLS culture 
media for 105  min with [⁶⁴Cu]Cu-PEG-FUD, followed 
by autoradiography and gamma counting. To confirm 
appropriate peptide targeting, a subset of PCLS isolated 
14 days post-bleomycin administration were fixed in 4% 
paraformaldehyde and co-stained against the PEG por-
tion of PEG-FUD and FN, the peptide target. Our stain-
ing revealed increased PEG staining that overlaps with 
FN deposition (Fig. 2A) in bleomycin-treated lungs incu-
bated with [⁶⁴Cu]Cu-PEG-FUD, suggesting that PEG-
FUD peptide targeted to fibrotic lungs ex vivo. On the 
other hand, we observed little PEG staining in the PCLS 
from uninjured lungs incubated with [⁶⁴Cu]Cu-PEG-
FUD or fibrotic lungs incubated with the control peptide, 
[⁶⁴Cu]Cu-PEG-mFUD. We utilized autoradiography and 
gamma counting to visualize and quantify the amount of 
bound radiolabeled peptide at each timepoint. We found 
that [⁶⁴Cu]Cu-PEG-FUD bound more readily to the 
fibrotic PCLS compared to uninjured PCLS at each time 
point analyzed, including days 7, 14, 21, 28, and 41 post-
bleomycin (Fig.  2B, C). Moreover, we confirmed that at 
each of these time points, [⁶⁴Cu]Cu-PEG-FUD main-
tained significantly higher binding capacity compared 
to the mutant control, [⁶⁴Cu]Cu-PEG-mFUD, further 
corroborating PEG-FUD’s specificity to its target, FN, 
an important component in the fibrotic process [21, 24]. 
Additionally, by comparing [⁶⁴Cu]Cu-PEG-FUD binding 
to PCLS during different time points post-bleomycin, we 
found that the highest level of targeting to fibrotic PCLS 
occurred 7–14 days post-bleomycin, representing the 
timing of extensive fibrogenesis. Overall, these data show 
that [⁶⁴Cu]Cu-PEG-FUD targets PCLS from bleomycin-
treated lungs, peaking at the time points characterized 
by de novo ECM deposition in the early phase of active 
disease.

Single dose effects of PEG-FUD
To determine preliminary metrics of safety for use in 
vivo, we examined the potential toxicity of PEG-FUD 
in mice. We reviewed mouse health and several metrics 
of metabolic health, including blood counts and plasma 
indices of renal and hepatic health 24  h post-subcuta-
neous injection of various doses of PEGylated peptides 
(PEG-FUD or PEG-mFUD) or vehicle control. Mice 
appeared to have no behavioral or overall health change 
after one administration of PEG-FUD at any of the doses 
tested (0.16  mg/kg to 25  mg/kg). As demonstrated in 
Table S1, we observed significant differences in several 
indices of RBC shape and composition, including mean 
corpuscular volume (MCV), hematocrit (HCT), mean 
corpuscular hemoglobin concentration (MCHC), and 
red blood cell distribution (RDW) compared to vehicle 
control (Figure S2A-D). We also found changes in blood 

urea nitrogen (BUN), a marker of kidney function (Figure 
S2E). However, for all of these analytes the effect size was 
small and not clinically significant with the observed dif-
ferences being largely between vehicle control and both 
peptides (both PEG-FUD and PEG-mFUD), indicating a 
potential role for the PEG moiety. In addition, we found 
some significant changes in the markers of liver func-
tion, such as alanine transaminase (ALT), total protein 
(TP) and albumin (ALB) (Figure S2F-H). Despite the liver 
hepatocytes being one of the major producers of liver FN, 
the presented changes did not appear specific to the FN-
targeting peptide, nor did they trend with increasing dose 
of the peptides. Altogether, these findings did not show 
any clinically relevant effects of PEG-FUD on animal 
health. These data are consistent with previous studies 
using PEG-FUD and FUD in mouse models of cardiac, 
kidney, and liver fibrosis without any reported adverse 
effects [46–50].

Temporal binding of Cy5-PEG-FUD in relevant mouse 
organs
Given that our data supported the safety of a single bolus 
dose of PEG-FUD in vivo, we sought to assess the pep-
tide biodistribution in relevant organs. For this, separate 
mouse cohorts were subcutaneously administered flu-
orescently-labeled Cy5-PEG-FUD (or Cy5-PEG-mFUD 
control) and the total radiant efficiency in the blood, 
heart, lung, liver, and kidney ex vivo were quantified the 
following day using the IVIS fluorescence imaging. In 
healthy mice, analysis 24  h post-injection revealed con-
tinued circulation of fluorescently-labeled Cy5-PEG-
FUD in the blood (2.31 × 108 [p/s] / [µW/cm2]) and heart 
(3.14 × 108 [p/s] / [µW/cm2]). We also detected peptide 
retention in the lung (2.76 × 109 [p/s] / [µW/cm2]), liver 
(4.22 × 109 [p/s] / [µW/cm2]) and kidney (2.54 × 109 [p/s] 
/ [µW/cm2]).

Subsequently, we assessed the uptake of Cy5-PEG-FUD 
and Cy5-PEG-mFUD control in relevant extrapulmonary 
organs/compartments at several timepoints after deliv-
ery of a single dose of intratracheal bleomycin. Analysis 
of the blood, heart, and liver revealed that Cy5-PEG-FUD 
uptake was higher than that of Cy5-PEG-mFUD at most 
timepoints, likely due to Cy5-PEG-FUD binding to FN in 
those tissues (Fig. 4 and S3). However, we found no dif-
ference in uptake in these organs between healthy mice 
and those subjected to bleomycin treatment at any of the 
time points. Notably, in the kidney Cy5-PEG-FUD and 
Cy5-PEG-mFUD peptide uptake was the same (Fig.  4), 
likely due to the peptides’ propensity for renal clear-
ance in both healthy and bleomycin-injured mice [19, 
29]. Altogether, these studies demonstrate that uptake 
of Cy5-PEG-FUD in the heart, blood, liver, and kidney is 
unchanged in healthy mice and throughout the course of 
bleomycin-induced lung fibrosis.
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Temporal binding of Cy5-PEG-FUD in fibrotic mouse lungs
Since there was a differential uptake of [⁶⁴Cu]Cu-PEG-
FUD by fibrotic PCLS during various timepoints in the 
bleomycin model of pulmonary fibrosis, we were inter-
ested in assessing the probe’s uptake in bleomycin-injured 

lungs after subcutaneous administration during differ-
ent phases of this model. On days 3, 7, 14, 21, 28, and 42 
post-bleomycin, separate mouse cohorts were adminis-
tered Cy5-PEG-FUD (or Cy5-PEG-mFUD). The follow-
ing day, mouse tissues were isolated and imaged ex vivo. 

Fig. 4 Cy5-PEG-FUD uptake is increased in liver compared to mutant control, while both peptides appear to be renally cleared. Mice were treated intra-
tracheally with bleomycin (1 U/kg, IT) or normal saline. At indicated time points, Cy5-PEG-FUD or Cy5-PEG-mFUD (0.1875 mg/kg Cy5-labeled peptide in 
12.5 mg/kg mass dose) were administered subcutaneously. One day later, liver (A, B) and kidney (C, D) tissues were collected. (A) Representative images 
of livers are included. (B) Total radiant efficiency was quantified in livers. (C) Representative images of kidneys are included. (D) Total radiant efficiency was 
quantified in kidneys. n ≥ 3 mice/group. Data are represented as mean ± SD
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Lung image analysis revealed increased Cy5-PEG-FUD 
lung uptake 7, 14, and 21 days post-bleomycin in com-
parison to both control groups: fibrotic lungs from mice 
administered Cy5-PEG-mFUD control (at equivalent 
time points) and normal lungs from mice administered 
Cy5-PEG-FUD (Fig.  5). Cy5-PEG-FUD uptake in lungs 
treated with bleomycin 3 and 42 days earlier was only 
higher compared to the uptake of Cy5-PEG-mFUD con-
trol but not compared to normal lungs with Cy5-PEG-
FUD. Interestingly, there was no difference in uptake 
between any of the conditions  28 days post-bleomycin. 
Overall, these data show approximately a 4-fold increase 
of PEG-FUD probe uptake in the bleomycin-treated 
lungs during the fibrogenic and early established fibro-
sis phase (day 7–21) compared to normal controls, while 
the uptake during phases characterized by inflammation 
(day 3), established fibrosis (day 28), and resolution (day 
42) was only 2-fold higher compared to normal controls. 
Importantly, select tissue samples from mice throughout 
the course of the bleomycin-induced model were stained 
against FN, where we detected a correlative relationship 
between FN expression and Cy5-PEG-FUD uptake in 
the lungs (Figure S4). This finding supports the potential 
for PEG-FUD to target FN throughout the course of the 
model.

Correlation of PEG-FUD uptake with fibrotic burden
Next, to compare PEG-FUD uptake with overall fibrotic 
burden at each time point, we quantified fibrosis in a 
subset of mouse lung sections from the Cy5-PEG-FUD 
cohort above by Masson’s trichrome staining, followed by 
modified Ashcroft scoring [43]. We found that the Ash-
croft scores fit within the patterns of expected fibrotic 
development in the bleomycin-treated mice over time, 
with mild fibrotic scores predominating during the early 
pro-inflammatory phase (day 3 post-bleomycin) and dur-
ing the resolution phase (day 42 post-bleomycin). Moder-
ate and severe fibrosis were present during the fibrogenic 
phase (day 7–14) and established fibrosis (day 21–28) 
(Fig. 6). 

We then determined whether Cy5-PEG-FUD lung 
uptake correlated with the degree of fibrotic burden. 
First, we detected a significant positive correlative rela-
tionship between Cy5-PEG-FUD lung uptake and fibrotic 
burden by Ashcroft score when considering all time-
points together and including uninjured lungs due to 
their non-zero presence of fibronectin (Fig. 7A and S4B). 
Given the temporal evolution of this model, exemplified 
by different transcriptome, proteome and matrisome 
profiles during these unique time points in the model, we 
were interested in examining the relationship between 
Cy5-PEG-FUD uptake and fibrosis at each time point 
(Fig. 7B-G). The linear regression analysis demonstrated 

Fig. 5 Cy5-PEG-FUD targets the fibrogenic phase of the bleomycin-induced pulmonary fibrosis in mice. Mice were treated with intratracheal bleomycin 
(1 U/kg, IT) or normal saline control. Cy5-PEG-FUD or Cy5-PEG-mFUD control (0.1875 mg/kg Cy5-labeled peptide in 12.5 mg/kg mass dose) were subcu-
taneously administered to different groups of mice at indicated time points, followed by ex vivo lung tissue imaging 24 h later using the In Vivo Imaging 
System. (A) Representative images of lung tissue from each group are included. (B) Total radiant efficiency was quantified and compared at each time 
point using One Way ANOVA with Šídák post-hoc test. n ≥ 3 mice/group. Data are represented as mean ± SD
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the strongest correlative relationship between total radi-
ant efficiency resulting from Cy5-PEG-FUD uptake in 
the lung compared to fibrosis in samples from days 7 
and 14 (Fig. 7C-D). On the other hand, the relationship 
between Cy5-PEG-FUD uptake and fibrotic scoring was 
not significant on days 3, 21, 28, and 42. Taken together, 
this provides evidence that Cy5-PEG-FUD may be most 
suited to target the early fibrogenic phase in the bleomy-
cin model.

Discussion
FN is an ECM glycoprotein essential for deposition of the 
ECM components during lung fibrosis and is correlated 
with clinical parameters of disease progression [6, 21, 22, 
24]. Due to its critical role during early lung fibrosis dis-
ease development, we examined a FN-targeting peptide, 
PEG-FUD, as a probe for real-time assessment of disease 
progression [19]. In this study, we identified the local-
ization of PEG-FUD to the fibrotic lung throughout the 
course of bleomycin-induced murine pulmonary fibrosis. 

Fig. 6 Trichrome staining and Ashcroft scoring reveal the pattern of fibrotic burden during the bleomycin-induced murine model of pulmonary fibrosis. 
Mice were treated with bleomycin (1 U/kg, IT) or normal saline control followed by lung tissue collection. Masson’s trichrome staining (A) and Ashcroft 
scoring (B) was performed at indicated time points. Scale bar = 4 mm. Data are represented as mean ± SD
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We show that PEG-FUD peptide uptake increases during 
the fibrogenic phase of this model, confirming that this 
peptide could be an excellent candidate for non-invasive 
monitoring of pro-fibrotic activities.

Our previous studies examining the binding of PEG-
FUD in the spatially heterogenous human IPF lung ex 
vivo demonstrated that this peptide was found preferen-
tially in areas of nascent fibrosis, such as the fibroblas-
tic foci [19]. In turn, we found that areas characterized 
by end-stage fibrosis with mature scarring showed lower 

levels of peptide uptake, suggesting that PEG-FUD may 
specifically target nascent regions of fibrosis, consis-
tent with the spatial profiling of FN expression in the 
IPF lung [24]. In this work, we assessed peptide target-
ing in the single-dose intratracheal bleomycin model of 
murine pulmonary fibrosis [45, 51, 52]. This is a well-
established model of self-resolving lung fibrosis that 
exhibits temporally distinct phases, with upregulation 
of FN expression in the mesenchyme peaking in the sec-
ond week post-bleomycin (Fig. 3) [44, 45, 53]. Using this 

Fig. 7 Cy5-PEG-FUD uptake correlates with fibrosis during the fibrogenic phase of bleomycin-induced pulmonary fibrosis in mice. Mice were treated 
with bleomycin (1 U/kg, IT) or normal saline before subcutaneous administration of Cy5-PEG-FUD in PEG-FUD (0.1875 mg/kg Cy5-PEG-FUD in 12.5 mg/
kg mass dose). One day later, mouse lung tissues were imaged ex vivo using the In Vivo Imaging System and total radiant efficiency quantified. Subse-
quently, the same tissues were subjected to Masson’s trichrome staining and modified Ashcroft scoring to quantify fibrosis. The total radiant efficiency 
and Ashcroft scores from each lung were plotted and linear regression modeling was performed on log10 transformed, normalized data combined for all 
time points (A) and for indicated time points (B-G)
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model, we analyzed the level of peptide binding through 
two separate methods. First, we analyzed direct bind-
ing of the radiolabeled peptide, [64Cu]Cu-PEG-FUD (or 
corresponding control [34]), to fibrotic PCLS over the 
course of this model in comparison to normal PCLS. We 
found that [64Cu]Cu-PEG-FUD more readily targeted 
the fibrotic PCLS at all points in the bleomycin-induced 
model compared to the controls, with peak uptake found 
during the day 7–14 post-bleomycin timepoints, corre-
sponding to expected FN expression in this model [44, 
45, 53]. To examine these results in further detail and 
considering our previous work extensively profiling the 
absorption kinetics of fluorescently labeled peptide, Cy5-
PEG-FUD, following subcutaneous delivery, we admin-
istered fluorescently labeled peptides subcutaneously 
to mice in vivo [29, 30]. We subsequently quantified its 
targeting to the relevant organs ex vivo, including lungs, 
after bleomycin instillation. Since the mechanisms of 
delivery differed between PCLS and in vivo administra-
tion, this likely led to differential availability of peptide 
for binding in vivo due to FN targeting in additional tis-
sue, including the liver [19, 54], as well as systemic circu-
lation and clearance. Still, we found that patterns of lung 
uptake were similar between the two models. Consistent 
with our PCLS data, in vivo administration resulted in 
the highest differential uptake compared to non-injured 
lungs 7–21 days post-bleomycin, during the phases of 
fibrogenesis and early established fibrosis. This is sup-
ported by the correlative relationship between Cy5-PEG-
FUD uptake with histological fibrosis on days 7 and 14.

The propensity of PEG-FUD to target nascent fibrotic 
processes may be due to several factors. First, FN tran-
scriptome and matrisome expression peaks in the early 
phase of the bleomycin-induced lung fibrosis (~ day 10 
post-bleomycin, Figs.  3 and [44, 45]), following a com-
parable pattern to that demonstrated in our studies. 
Similarly, in human disease FN is highly and differen-
tially upregulated in fibroblastic foci, in contrast to other 
regions of the fibrotic lung, including the mature scar 
[24]. Second, given the localization of ECM-binding sites 
within the FN fibril, upon deposition of FN and other 
ECM molecules into the FN scaffold, the ability of PEG-
FUD peptide to bind to FN’s 70kD terminal may be com-
promised by collagen binding to FN [22, 25, 35]. Finally, 
it has been previously reported that FN is kept at high 
tension in healthy tissues, relaxing under pathologic con-
ditions [55]. Thus, it is possible that PEG-FUD peptide 
exhibits differential kinetics for binding FN under the 
more relaxed tensional state in fibrosis. Altogether, these 
findings are in line with our previous studies utilizing 
clinical lung tissue which suggest that PEG-FUD targets 
FN more readily during de novo ECM deposition rather 
than the extensively remodeled, end-stage fibrosis [19].

We previously determined that the conjugation of FUD 
to single 20 kD linear PEG group increases the systemic 
circulation [28, 29]. This is evident through the continued 
presence of Cy5-PEG-FUD in the blood and heart 24  h 
post-injection (Figure S3). While our assessment of blood 
markers did not reveal effects specific to the FN-target-
ing peptide, we noted changes in the profile of select 
blood markers from PEGylated molecules compared 
to the vehicle control. Specifically, PEG-FUD and PEG-
mFUD may have an impact on red blood cells (RBC), 
potentially indicative of increased osmolality, which has 
been previously reported with PEGylated compounds 
[56, 57]. Given its critical importance in homeostatic 
physiology, we were interested in assessing the poten-
tial effect of PEG-FUD administration on other relevant 
organ function. In the liver, Cy5-PEG-FUD uptake was 
increased, likely due to the hepatocytic plasma FN syn-
thesis (Fig. 4A, B), while the high level of uptake of both 
peptides in the kidney suggests renal clearance, as we 
have previously observed [19]. Finally, the metabolic 
panel revealed some statistically significant changes 
(Table S1 and Figure S2E-H). However, these changes did 
not appear to be clinically relevant as the analytes from 
mice treated with PEGylated molecules remained within 
or near the normal range and PEGylated compounds are 
routinely used clinically [58, 59].

Important limitations of the study include the use of the 
bleomycin model of murine pulmonary fibrosis, which is 
commonly used for in vivo assessments of therapeutic 
and imaging agents [12, 17, 19, 20, 41, 52, 60]. Despite 
its importance to the field of lung fibrosis research, this 
model does not perfectly recapitulate human disease as 
it lacks histopathologic features, including the fibroblas-
tic foci, and is self-resolving in contrast to the human 
disease. Thus, this model may exhibit different uptake 
dynamics compared to human disease or other animal 
models. In addition, administration of bleomycin results 
in an inflammatory phase prior to the onset of fibrosis, 
which is qualitatively different from many human ILDs, 
including IPF. However, this model does recapitulate 
important features of fibrotic development, includ-
ing recapitulation of aberrant cell phenotypes found in 
human disease, centrality of TGF-β signaling in fibrotic 
progression, and similar ECM compositional changes, 
including FN deposition. Additionally, this model results 
in increased vascular permeability during these early 
phases of the model which can confound molecular 
probe uptake [61]. However, we utilized the Cy5-PEG-
mFUD control, which differs from Cy5-PEG-FUD by 
seven amino acid residues that significantly decrease its 
capacity for binding FN [34]. We show that while there is 
some increase in Cy5-PEG-mFUD uptake that may be a 
result of vascular leakage post-bleomycin, the uptake of 
Cy5-PEG-FUD is significantly higher than this control 
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even at early time points. Another limitation of this study 
was the small sample size for each of the individual time 
point correlative analyses comparing Ashcroft scoring 
and total radiant efficiency. Still, the residual plots were 
visualized following analyses to ensure normality of the 
results. Finally, this study did not involve in vivo imaging. 
For this study, we elected to demonstrate peptide binding 
using two separate ex vivo imaging methods. While PCLS 
were directly incubated with radiolabeled peptides, fluo-
rescently labeled peptides administered subcutaneously 
in vivo followed by ex vivo tissue imaging enabled us to 
glean differential organ uptake more closely. Although 
the end goal is to employ this peptide as a radiolabeled 
PET probe, for these studies we chose to pursue addi-
tional, complementary avenues of characterizing the 
temporal uptake over the bleomycin-induced model to 
expand our experimental capabilities. In the future, these 
results will be validated through PET imaging of radiola-
beled peptides following intravenous delivery, as well as 
in alternative models of lung fibrosis.

This study has potential impact for the field of molecu-
lar imaging of lung fibrosis, as methods that permit more 
precise and intricate assessment of disease progression 
are needed in clinical practice. In pulmonary fibrosis, 
potential molecular imaging targets being developed 
represent various disease mechanisms, such as activity 
of pathogenic fibroblasts and macrophages, ECM depo-
sition, as well as detection of pro-fibrotic integrins [12, 
14, 15, 17, 62–64]. Patterns of peak uptake in the early 
phase of the bleomycin model that decline during the 
established phase are seen with certain molecular tar-
gets, such as [18F]-fluorodeoxyglucose ([18F]FDG) PET, 
which reveals glucose uptake and metabolism, and [64Cu]
NODAGA-CG34, a peptide reporter of pro-fibrotic 
monocyte-derived macrophages [9, 13, 65]. However, 
both of these probes target alternative mechanisms, such 
as cellular metabolism and inflammation, which may 
confound its use in clinical practice. We see a similar pat-
tern of peak uptake during bleomycin-induced fibrogene-
sis by targeting an ECM glycoprotein, FN, which does not 
temporally overlap with the inflammatory phase of the 
model suggesting potential specificity for fibrogenesis. 
In IPF, FN is associated with clinical markers of disease 
progression and preferentially upregulated in fibroblastic 
foci, which represent the sites of early fibrogenesis from 
which fibrosis spreads [6, 23, 24]. Early detection of FN 
deposition is especially noteworthy since ECM deposi-
tion is a key step in the development and progression of 
fibrosis and thus, detection of early phases of this process 
can provide critical information about ongoing activity 
specific to the molecular mechanisms of this disease. For 
this reason, FN has been considered as an imaging bio-
marker in pulmonary fibrosis and other disorders marked 
by ECM deposition, including cancer [20, 30]. Since FN 

is involved in other important biologic mechanisms, such 
as wound healing, utilization of molecular imaging to 
target FN would provide the added benefit of combining 
additional, advanced imaging approaches, such as HRCT, 
to enable detailed characterization of the parenchymal 
abnormalities in parallel. Other ECM and associated 
molecular imaging targets of pulmonary fibrosis are also 
being developed, including collagen, collagen oxidation, 
allysine, all of which have been shown to be increased 
in the fibrotic lungs [17, 66–68]. PEG-FUD is advanta-
geous because of its nanomolar binding affinity for FN 
and its potential to detect fibrogenic activity earlier given 
the critical role that FN plays in disease progression and 
regulating the deposition of other ECM molecules [6, 22, 
69, 70].

In summary, this study interrogated the longitudi-
nal uptake of a FN-targeting peptide, PEG-FUD, in the 
bleomycin-induced murine model of pulmonary fibro-
sis. Using both direct incubation of PCLS and indirect 
targeting through in vivo delivery, we found increased 
probe uptake during the fibrogenic phase after bleomy-
cin-induced lung injury. This is an important demonstra-
tion of an ECM-targeting probe that may be translatable 
for non-invasive, real-time detection of early disease 
mechanisms, something currently unavailable but criti-
cally needed to provide clinicians the important insight 
into patients’ disease status and the need for alteration 
in therapeutic management. To this end, future stud-
ies will focus on using PET imaging to confirm these 
trends of the radiolabeled probe uptake in both resolv-
ing and non-resolving preclinical models of lung fibrosis, 
as well as examine the capacity of this probe to predict 
future fibrotic burden and monitor antifibrotic treatment 
response, critical aspects of patient care that cannot be 
ascertained contemporaneously using currently available 
clinical methods.
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