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Abstract
Background Preserved Ratio Impaired Spirometry (PRISm) is considered to be a precursor of chronic obstructive 
pulmonary disease. Radiomics nomogram can effectively identify the PRISm subjects from non-COPD subjects, 
especially when during large-scale CT lung cancer screening.

Methods Totally 1481 participants (864, 370 and 247 in training, internal validation, and external validation cohorts, 
respectively) were included. Whole lung on thin-section computed tomography (CT) was segmented with a fully 
automated segmentation algorithm. PyRadiomics was adopted for extracting radiomics features. Clinical features 
were also obtained. Moreover, Spearman correlation analysis, minimum redundancy maximum relevance (mRMR) 
feature ranking and least absolute shrinkage and selection operator (LASSO) classifier were adopted to analyze 
whether radiomics features could be used to build radiomics signatures. A nomogram that incorporated clinical 
features and radiomics signature was constructed through multivariable logistic regression. Last, calibration, 
discrimination and clinical usefulness were analyzed using validation cohorts.

Results The radiomics signature, which included 14 stable features, was related to PRISm of training and validation 
cohorts (p < 0.001). The radiomics nomogram incorporating independent predicting factors (radiomics signature, 
age, BMI, and gender) well discriminated PRISm from non-COPD subjects compared with clinical model or radiomics 
signature alone for training cohort (AUC 0.787 vs. 0.675 vs. 0.778), internal (AUC 0.773 vs. 0.682 vs. 0.767) and external 
validation cohorts (AUC 0.702 vs. 0.610 vs. 0.699). Decision curve analysis suggested that our constructed radiomics 
nomogram outperformed clinical model.

Conclusions The CT-based whole lung radiomics nomogram could identify PRISm to help decision-making in clinic.
Key message
What is already known on this topic Identifying PRISm subjects among non-COPD subjects, especially in the 
context of large-scale CT lung cancer screening, is currently a challenge.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a 
primarily factor causing morbidity and mortality glob-
ally, ranking the third leading cause of death globally and 
resulting in tremendous health care, social and economic 
burdens [1–3]. The COPD burden may be significantly 
increased in the future decades owing to rapid aging of 
Chinese population. According to recent demographic 
data from the National Bureau of Statistics of China, 
the proportion of the population aged 65 and above is 
expected to increase from 12.6% in 2020 to a projected 
28.1% by 2050 [4]. This rapid aging trend could signifi-
cantly heighten the COPD burden in China compared to 
other populations. A recent meta-analytic study revealed 
that the prevalence of COPD increases notably with age 
with a marked rise from 4.37% (95% CI 2.76% − 6.33%) 
among individuals aged 40–49 years to 24.03% (95% CI 
20.04%-28.26%) in those aged 70 years and older [5]. 
Moreover, it has been reported China had the largest 
absolute economic burden of COPD in the world, China 
alone accounts for 83.5% of the economic losses in upper-
middle-income countries [6]. Screening and identifying 
COPD early can prevent disease progression and reduce 
health and economic burdens.

Preserved ratio impaired spirometry (PRISm), also 
known as restrictive pattern or unclassified spirom-
etry, is defined as a FEV1 of less than 80% predicted, 
despite a normal or preserved FEV1/forced vital capac-
ity (FVC) ratio (≥ 0.70) [7]. PRISm can transition to nor-
mal, obstructive or restrictive spirometry over time [8]. 
Therefore, PRISm has been increasingly identified with 
prognostic significance [9–12]. Based on some popula-
tion-based studies performed in Western populations, 
PRISm subjects are associated with an increased airflow 
limitation (AFL) rate and an increased mortality risk 
relative to subjects having normal lung function [9–12]. 
These observations are similar to those reported from 
the Asian region [13]. According to the community sur-
vey involving 3032 Japanese people during the 5-year 
follow-up [13], 31 with PRISm at the first visit showed 
an increased overall mortality and a higher probability 
of COPD progression compared with people showing 
normal spirometry. As a result, finding markers that can 

accurately identify PRISm and offer a foundation for early 
prognosis prediction is of great significance for enhanc-
ing the management of clinical subjects.

Despite PFTs remaining the gold standard for diag-
nosing PRISm, the utilization rate is relatively low. In 
China, only 6.7% of individuals over 40 have undergone 
PFTs, resulting in a significant number of undiagnosed 
cases due to limited accessibility [14]. Imaging, particu-
larly chest CT scans, offer considerable advantages and 
potential. With the widespread adoption of lung cancer 
screening programs, not only the use of CT scans are 
increased but also CT could provide more detailed ana-
tomical information. Results from large-scale screening 
studies such as NELSON and NLST have shown reduced 
mortality rates of lung cancer undergoing lung cancer 
CT screenings [15]. These advancements offer greater 
survival chances for cancer patients. If we can simulta-
neously screen for PRISm during lung cancer screenings 
could provide more timely medical interventions and 
more benefit for the population [16].

In recent years, radiomics has aroused increasing 
attention, which refers to the process in which medical 
images are converted in high-dimensional, mineable data 
through high-throughput quantitative feature extrac-
tion and data analysis to support decision-making [17]. 
Radiomics is adopted for identifying chest diseases and 
evaluating prognosis [18–22]. Recently, several imaging 
studies have focused on exploring those imaging features 
of PRISm and the significance of quantitative HRCT in 
early diagnosis. However, to our best knowledge, stud-
ies have not yet investigated the relationship between 
radiomics and PRISm. The purpose of the study was to 
investigate the performance of CT radiomics in identi-
fying PRISm subjects among non-COPD subjects with 
one-stop CT screening.

Methods
Subjects
Totally 1513 subjects with PFT in five hospitals were 
retrospectively recruited between February 2013 and 
December 2022. The trial was registered in Chinese 
Clinical Trial Registry on 29 March 2023 (Number: 
ChiCTR2300069929, URL: https://www.chictr.org.cn/

What this study adds In this retrospective, and multicentric study that included 1481 subjects, radiomics nomogram 
developed by integrating radiomics signature and clinical features achieved good performance for the identification 
of PRISm, with AUC of 0.787, 0.773 and 0.702 in training, internal and external validation cohort.

How this study might affect research, practice or policy Radiomics nomogram, as a promising tool for identifying 
the PRISm from non-COPD subjects, hold great potential for guiding timely treatment and showing the added value 
of chest CT to evaluate the lung function status besides the morphological evaluation, especially during large-scale 
CT lung cancer screening.
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showproj.html?proj=192439). Subjects were enrolled 
based on the following inclusion criteria: (1) both chest 
CT and PFT were performed in the same hospital; (2) the 
PFT to chest CT interval less than 2 weeks; (3) complete 
thin-section (< 2  mm) chest CT images; (4) the post-
bronchodilator FEV1/FVC ≥ 0.7. The exclusion criteria as 
follows: (1) co-morbid other thoracic disease (e.g., pneu-
monia, pulmonary atelectasis, lung nodules larger than 
6 mm or masses, asthma, and pleural effusion); (2) con-
comitant malignant neoplasms; and (3) artifacts. Finally, 
1481 subjects were included in the study. Among them, 
1234 subjects from one hospital were randomly divided 
into training (n = 864) and internal validation cohort 
(n = 370) with the ratio of 7:3, using “caret” R package. 
Those from other four hospitals were classified in inde-
pendent external validation cohort (n = 247). Figure 1 dis-
plays the subjects screening workflow. In the meanwhile, 
clinical basic information of the subjects such as age, sex, 

height, weight, BMI, and smoking status, was obtained 
based on electronic medical records system. The approval 
of the retrospective study was provided by the institu-
tional review board of the leading hospital. Due to the 
retrospective nature, the informed consent was waived.

CT image acquisition and pulmonary function test
Table S1 shows the CT acquisition parameters and pul-
monary function test apparatus in detail. Lung function 
was categorized in line with modified GOLD criteria 
and prior studies [12, 23]. In this study, based on the 
PFT results, the non-COPD subjects were classified into 
the PRISm and normal spirometry groups for the train-
ing, internal validation and the independent external 
validation cohorts. Normal spirometry was defined as 
FEV1/FVC ≥ 0.70 and FEV1 ≥ 80% predicted; PRISm was 
defined as FEV1/FVC ≥ 0.70 and FEV1 < 80% predicted.

Fig. 1 Flowchart for the selection of the study population
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Whole lung CT segmentation, radiomics features 
extraction and selection
The pretrained CNN of U-Net structure was used to 
process chest CT images of each subject [24]. Firstly, the 
right and left lungs were automatically segmented using 
a publicly accessed deep-learning model, U-net (R231) 
(https://github.com/JoHof/lungmask), which has been 
trained based on different large-scale datasets including 
broad visual variability. Secondly, we merged the right 
and left lung into a combined region of interest (ROI) 
(Figure S1). Thirdly, an experienced chest radiologist with 
8-year experience examined the segmentation outcome 
visually with the use of ITK-SNAP software (version 
3.8.0, www.itksnap.org). Inaccurate segmentation could 
be corrected manually with ITK-SNAP.

Prior to the extraction of radiomics features, three 
steps were utilized for image preprocessing. Firstly, lin-
ear interpolation was employed to resample images to 
1  mm*1  mm*1  mm. Secondly, gray-level discretization 
was used for converting continuous images to discrete 
integer values and a bin width of 25 was used to reduce 
the effect of imaging noise. At last, wavelet and log image 
filters were adopted for eliminating mixed noise during 
image digitization and obtaining high- or low-frequency 
features. Pyradiomics software (version 3.0.1, https://
pyradiomics.readthedocs.io/en/latest/) was adopted for 
extracting lung radiomics features. Totally 1218 features 
were obtained in each volume of interest with open-
source package (pyradiomics), including first-order, gray-
level cooccurrence matrix (GLCM), gray-level run length 
matrix (GLRLM), gray-level size zone matrix (GLSZM), 
gray-level dependence matrix (GLDM), and shape fea-
tures. Radiomics features comply with the image bio-
marker standardization initiative (IBSI) [25], including 
standardization of acquisition and feature extraction, 
guidelines for annotation, segmentation, feature selec-
tion, model building and validation and clinical imple-
mentation. For the purpose of normalizing the features, 
the Z score method was adopted. In addition, the differ-
ence in the numerical scale was removed.

Optimal radiomics features were selected. Firstly, 
by eliminating redundancy with correlation coeffi-
cient > 0.90, we selected the optimal radiomic feature. 
Secondly, maximal redundancy minimal relevance 
(mRMR) algorithm was adopted for eliminating irrel-
evant or redundant features. mRMR has been demon-
strated to be an efficient and reliable feature selection 
method for radiomics which can discover the optimal 
subset of features through considering the importance of 
features and the correlation between them. Least abso-
lute shrinkage and selection operator (LASSO), which 
is the embedded approach, has been extensively applied 
to select high-dimensional radiomics features [26]. In 
addition, 10-fold cross-validation was carried out using 

penalty parameter and LASSO regression algorithm. The 
best feature dataset that had the lowest cross-validation 
binomial deviation was chosen, while nonzero coeffi-
cient was defined as selected feature weight, represent-
ing relation of features with PRISm. We used a linear 
combination of selected feature and coefficient vectors 
to calculate the Radscore of each subject. In addition, the 
construction of radiomics model was made.

Model, nomogram construction and performance 
evaluation
Three models were built including clinical, radiomic 
and the combined models. Statistically significant risk 
variables were identified through univariable logistic 
regression, which were then incorporated for multivari-
able regression to construct the clinical and combined 
models. Last, we constructed a nomogram to visualize 
the combined model, graphically evaluated the variable 
importance and calculate the prediction accuracy. AUCs 
(areas under the ROC curve) of those three models were 
compared using Delong test. Nomogram calibration was 
assessed through calibration curves (Hosmer-Lemeshow 
test). Nomogram clinical practicability was assessed by 
decision curves Analysis (DCA).

Statistical analysis
In statistical analysis, R software (version 4.2.2; http://
www.Rproject.org) and IBM SPSS Statistics (Version 
26.0; IBM Corp., New York, USA) were used. Measure-
ment data were represented through mean ± standard 
deviation. Continuous variables of normal distribution 
were evaluated with the use of Mann-Whitney/Wilcoxon 
nonparametric test. Categorical data were explored by 
chi-square test between groups. Independent predicting 
factors were determined from diverse clinical variables 
by multivariate logistic regression. P < 0.05 represented 
statistical significance. “glmnet” package was used for 
LASSO analysis. In addition, we employed “caret” pack-
age for random division. “rms” package was applied for 
drawing calibration plot and conducting multivariate 
logistic regression. “pROC” package was used for draw-
ing ROC (receiver operating characteristic curve) of 
radiomics signature. “rmda” package for DCA to evaluate 
net benefit, which is defined as the differential value of 
true positives proportion and false positives proportion, 
weighted by the relative harm of false positive and false 
negative results.

Results
Demographic data and clinical model establishment
Table 1 displays basic demographic features of subjects. 
A total of 864 subjects with normal spirometry were in 
training cohort (500 males, 364 females; average age, 
60.3 ± 12.7 years), 370 subjects were in internal validation 

https://github.com/JoHof/lungmask
http://www.itksnap.org
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
http://www.Rproject.org
http://www.Rproject.org
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cohort (207 males, 163 females; average age, 60.9 ± 11.8 
years) and 247 subjects were in external validation cohort 
(163 males, 84 females; average age, 61.6 ± 12.4 years). The 
rates of PRISm subjects were 37.5% (324 of 864), 42.2% 
(156 of 370), and 40.5% (100 of 247) of training, inter-
nal, and external validation cohorts, respectively. Three 
cohorts differed significantly regarding gender and BMI 
(p < 0.05). Significant differences were found in training 
and internal validation cohorts with respect to age and 
smoking status (p < 0.001), but not in external cohort. In 
addition, age distribution was not of significant difference 
between two validation cohorts. Table 1 displays results 
of univariate and multivariate logistic regression. Age, 
BMI, and gender identified from multivariable regres-
sion were included to develop the clinical model. Figure 2 
presents ROC curves for clinical model. The correspond-
ing AUCs were 0.675 (95% CI: 0.637, 0.712), 0.682 (95% 
CI: 0.627, 0.737) and 0.610 (95% CI: 0.538, 0.682) in train-
ing, internal and external validation cohorts, respectively.

Radiomics feature selection and radiomics signature
Among 1218 radiomics features extracted from chest CT 
images, 245 features exhibited high stability, and then 
were decreased to 30 features through minimum redun-
dancy maximum relevancy. Finally, LASSO was con-
ducted to select features (Fig. 3A, B), among which, those 
14 features with highest importance were retained, as 
shown in Fig. 3C. The calculation formulas for Radscore 
are listed in Supplementary Results.

Figure 2 displays ROC curves for radiomics signature. 
The AUCs of our radiomics signature were 0.778 (95% CI: 
0.746, 0.810), 0.767 (95% CI: 0.718, 0.815) and 0.699 (95% 
CI: 0.633, 0.766) for training, internal and external valida-
tion cohorts, respectively.

Radiomics nomogram construction and model 
performance evaluation
Radscore and clinical features were incorporated to 
develop the radiomics nomogram for training cohort 
(Fig. 4A). The calibration curve of the radiomics nomo-
gram showed good consistence between the predicted 
and expected probabilities for PRISm (Fig.  4B, C, D). 
Meanwhile, upon Hosmer–Lemeshow test, their P-values 
were 0.9995, 0.4521, and 0.1049 for training, internal, and 
external validation cohorts, respectively, which revealed 
relatively excellent agreement between the nomogram 
prediction and the actual observation. Figure  2 shows 
ROC curves for radiomics nomogram. AUCs were used 
as an index of diagnostic accuracy; a higher AUC reflects 
greater accuracy. Its AUC, sensitivity, specificity, and 
accuracy were 0.787 (95% CI: 0.756, 0.818), 75.0%, 68.5%, 
and 70.9%; 0.773 (95%CI: 0.725, 0.821), 64.1%, 78.8%, 
and 71.6%; and 0.702 (95%CI: 0.636,0.767), 63.9%, 68.0%, 
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and 65.6% in training, internal and external validation 
cohorts, separately.

Table  2 displays model diagnostic accuracy. Compari-
son between ROC curves was performed by the DeLong 
test. The Delong test showed that there was a statistically 
significant difference in AUCs between the radiomics 
nomogram and the clinical model (Z = 6.64, p < 0.001; 
Z = 3.72, p < 0.001; and Z = 2.46, p = 0.014 in the train-
ing, internal validation, and external validation cohort, 
respectively). There is a difference between the radiomics 
signature and radiomics nomogram (Z = -2.01, p = 0.044) 
in the training cohort. But no significant difference (Z 
= -0.84, p = 0.401 and Z = 0.18, p = 0.855 in internal vali-
dation, and external validation cohort, respectively) 
between the radiomics nomogram and radiomics signa-
ture. The correlation between radiomics signature and 
clinical model was the moderate in the training and inter-
nal validation cohorts (R = 0.4). Correlations in the exter-
nal validation cohort was weak (R = 0.2).

Decision curve analysis was used to evaluate the clini-
cal practicability of the nomogram prediction model 
(Fig.  4E). The results showed that the nomogram 
obtained more benefit than the “treat all,” “treat none,” 
and the clinical model when the threshold probability 
was in the range of 4–70%. An example of the nomogram 
in use is shown in Fig. 5. Similar to the points scoring sys-
tem, we assigned points for each predictor of PRISm and 
then equated these predictors with the risk of PRISm. 
We can read the top score scale upward from the predic-
tors to determine the points score associated with patient 
BMI, age, gender and the Radscore. Once a score has 
been assigned to each predictor, an overall score is calcu-
lated. Then, the total score is converted to the probability 
of PRISm by reading the associated probability of PRISm 
from the total point scale.

Discussion
Identifying subjects with PRISm is of great importance 
to verify the early, effective, and individualized decision-
making in the prevention of COPD, because many PRISm 
would progress into COPD. In the present study, the 
radiomics nomogram incorporating clinical factors and 
radiomics signature was established and verified to iden-
tify PRISm subjects based on whole lung CT radiomics. 
The radiomics nomogram proposed in the current work 
exhibited favorable discrimination in training cohort 
(AUC, 0.787), internal validation cohort (AUC, 0.773) 
and external validation cohort (AUC, 0.702), outperform-
ing radiomics signature (training, 0.778; internal valida-
tion, 0.767; external validation, 0.699) and clinical factor 
model (training, 0.675; internal validation, 0.682; external 
validation, 0.610).

The incidence and disease burden of COPD is high in 
China, the overall pulmonary function detection rate was 
still at a low level, and many people have been underdi-
agnosed. In contrast, the popularity of chest CT is very 
high, especially with the large-scale chest CT screening 
for lung cancer. Moreover, more and more community 
health service centers will be equipped with CT. There-
fore, the most important clinical scenario is for the large-
scale lung cancer screening population that usually does 
not perform PFT, and many people who were high risk 
(most likely to develop COPD) can be found through 
our model prediction, which can help enhance the early 
intervention of PRISm, reduce the social-economic bur-
den and improve the patient’s life quality. Many clinical 
factors have been explored in PRISm. It has been found 
female sex, old age, smoking, and extreme weight were 
related to PRISm [27]. The former and current smok-
ers were examined in one cross-sectional and follow-
up study of COPDGene [10, 28], as a result, PRISm 

Fig. 2 Diagnostic performance of the clinical factors model, radiomics signature, and radiomics nomogram was assessed and compared through ROC 
curves in the training (A), internal validation (B) and external validation (C) cohorts. ROC = receiver operating characteristics; AUC = area under the receiver 
operating characteristic curve
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patients showed the increased BMI compared with 
COPD patients and normal subjects, while persistent 
smoking independently predicted the reduced life qual-
ity of COPD patients. Many studies suggest that age and 

BMI are imperative risk factors of PRISm [7]. The older 
cohorts may show an increased impaired spirometry rate, 
particularly through the longitudinal follow-up. BMI 
can induce the risk of PRISm risk through the distinct 

Fig. 3 Radiomics feature selection by using the least absolute shrinkage and selection operator (LASSO) logistic regression. (A) Selection of the tuning 
parameter (λ) in the LASSO model via 10-fold cross-validation based on minimum criteria. Binomial deviances from the LASSO regression cross-validation 
model are plotted as a function of log(λ). The y-axis shows binomial deviances and the lower x-axis the log(λ). Numbers along the upper x-axis indicate the 
average number of predictors. Red dots indicate average deviance values for each model with a given λ, and vertical bars through the red dots indicate 
the upper and lower values of the deviances. The vertical black lines define the optimal values of λ, where the model provides its best fit to the data. (B) 
The coefficients have been plotted vs. log(λ). (C) The 14 features with nonzero coefficients are shown in the plot
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Fig. 4 Radiomics nomogram, calibration curves and DCA curves. (A) The radiomics nomogram, combining age, BMI, gender and Radscore, was devel-
oped in the training cohort. (B–D) The nomogram calibration curves in training (B), internal validation (C), and external validation (D) cohorts. Calibration 
curves indicate the goodness-of-ft of the model. (E) Decision curve analysis for different models
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pathway, including inflammatory and metabolic effects 
of adipose tissue [29]. Previous population-based stud-
ies suggest increased risk of restrictive pattern among 
females [30, 31]. In our study, age, sex and BMI were 
selected as independent predictors for PRISm subjects, 
Table  3 showed that female subjects with increased age 
and BMI are more likely to be PRISm, which was consis-
tent with previous studies.

To the best of our knowledge, relevant studies are few 
on the identification of PRISm with CT-based meth-
ods. Wei et al. [32] evaluated the CT-based quantitative 
features with an in-house system, and found that lung 
capacity, emphysema index, and airway wall area did 
not predict intermediate-stage chronic bronchitis that 
progresses from normal lung function to early COPD. 
Moreover, their study did not evaluate CT textural 

Table 2 Results of radiomics nomogram, radiomics signature, and the clinical factors model predictive ability for distinguishing 
between normal lung function and PRISm
Parameter Cutoff AUC (95% CI) Sensibility Specifcity
Clinical factors model Training cohort -0.35 0.675(0.637–0.712) 0.586 0.693

Internal validation cohort 0.682(0.627–0.737) 0.557 0.696
External validation cohort 0.610(0.538–0.682) 0.500 0.667

Radiomics signature Training cohort -0.53 0.778(0.746–0.810) 0.679 0.743
Internal validation cohort 0.767(0.718–0.815) 0.667 0.743
External validation cohort 0.699(0.633–0.766) 0.470 0.769

Radiomics nomogram Training cohort -0.68 0.787(0.756–0.818) 0.750 0.685
Internal validation cohort 0.773(0.725–0.821) 0.640 0.788
External validation cohort 0.702(0.636–0.767) 0.639 0.680

Fig. 5 An example of the nomogram in clinical practice. The nomogram was used to calculate the scoring process of risk of PRISm. (A) Thin-section 
chest CT image of a 49-year-old normal female subject. Her Clinical features were analyzed as follows: BMI = 19.5 kg/m2, Radscore = -2.64. The nomogram 
showed that this patient had a total of 174 points after summing all points, which corresponds to a close to 4.00% probability of PRISm. (B) Thin-section 
chest CT image of a 43-year-old male subject. His clinical features were analyzed as follows: BMI = 30.80 kg/m2, Radscore = 4.30. The nomogram showed 
that this patient had a total of 225 points after summing all points, which corresponds to a close to 96.9% probability of PRISm
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features and relevant clinical factors. To date, there are 
rare study for the identification of PRISm population 
using radiomics. The CT-based radiomics nomogram is 
established by integrating clinical factors and radiomics 
signature for identifying PRISm in our study. It is very 
difficult to identify the proper margin of the diffuse lung 
lesions. Thus, the full-automatic lung lobe segmentation 
method was performed using U-Net, which has been 
proven efficacy in pulmonary disease, especially pulmo-
nary diffuse disease [33–36]. This radiomics signature 
included 14 radiomics features, which well distinguished 
PRISm subjects from normal spirometry subjects, and 
the performances were high in training (0.776 [95%CI, 
0.746–0.810]), internal (0.767 [95%CI, 0.718–0.815]) and 
external validation (0.699 [95%CI, 0.633–0.766]) cohorts. 
In our radiomics signature, the majority of the features 
were transformed by wavelet filter, splitting imaging data 
into various different frequency components on three 
axis of the whole lung region [37]. This suggests that 
wavelet features probably interpret spatial heterogene-
ity in whole lung regions at multiple scales. In addition, 
the constructed radiomics signature model was com-
bined with the clinical factors. Lu et al. predicted PRISm 
from the normal by the combination of CT quantitative 
parameters, as well as clinical features with an AUC of 
0.786 [38]. Our study made a greater performance sightly 
(AUC = 0.787).

The constructed novel PRISm prediction nomogram 
was further evaluated by a decision curve to clarify the 
clinical utility, which could offer insight into clinical out-
comes on the basis of threshold probability, from which 
the net benefit could be derived [39, 40]. The results 
showed that if the threshold probability of a patient is 
> 4%, the application of our constructed radiomics nomo-
gram in predicting PRISm was more beneficial in relative 
to the treat-none or treat-all-patients scheme. The pres-
ent novel nomogram provides an important quantita-
tive indicator and reference for the decision-making and 
management of treatment regimens for PRISm subjects. 
The new approach sheds more lights on clinical outcomes 
according to threshold probability, and net benefits were 
obtained on this basis [41].

However, this study still has the following limitations. 
First, owing to the retrospective and multi-institutional 
nature of the current work, CT acquisition parameters 
and reconstruction techniques were not in consistence. 
But, we use techniques such as regularization, normal-
ization, and resampling to improve the performance of 
CT images, thereby enhancing the accuracy and reli-
ability of diagnosis. Second, common CT quantitative 
parameters can be measured to provide more informa-
tion on pulmonary lesions, such as air trapping, pulmo-
nary vascular disease and so on. Therefore, in the future, 
we will incorporate these common quantitative features 
to optimize our prediction model. Thirdly, to keep pace 
with the advances in technology, other advanced deep-
learning algorithm should be applied in our further stud-
ies. Fourth, we have excluded lung cancer patients in this 
study; however, in future research, we will include lung 
cancer patients and apply whole lung radiomics to distin-
guish whether they have PRISm or not.

To sum up, the CT radiomics model incorporating 
clinical factors and radiomics signature is established and 
validated to identify PRISm in non-COPD subjects. The 
radiomics approach may be helpful to delay initiation 
COPD progression.

Abbreviations
COPD  Chronic obstructive pulmonary disease
GOLD  Global initiative for chronic obstructive lung disease
PFT  Pulmonary function test
FEV1/FVC  The ratio of forced expiratory volume in 1 s to forced vital 

capacity
PRISm  Preserved Ratio Impaired Spirometry
AFL  Airflow limitation
CT  Computed tomography
ROI  Region of interest
BMI  Body mass index
GLCM  Gray level cooccurrence matrix
GLSZM  Gray level size zone matrix
GLDM  Gray level dependence matrix
mRMR  Maximal redundancy minimal relevance
LASSO  Least absolute shrinkage and selection operator
DCA  Decision curves analysis
AUC  The area under the curve
ROC  The receiver operating characteristic curve

Table 3 Univariate and Multivariate logistic regression analysis
Variable Univariate logistic regression Multivariate logistic regression

(Clinical model)
Multivariate logistic regression
(Radiomics nomogram)

OR 95%CI P value OR 95%CI P value OR 95%CI P value
Age 1.03 1.02–1.04 < 0.001 1.03 1.01–1.04 < 0.001 1.01 1.00-1.03 0.059
Height 1.03 1.01–1.05 < 0.001
Weight 1.04 1.02–1.05 < 0.001
BMI 1.10 1.06–1.14 < 0.001 1.08 1.04–1.13 < 0.001 1.02 0.98–1.07 0.37
Smoking 0.76 0.64–0.90 0.002
Gender 0.43 0.32–0.57 < 0.001 0.48 0.36–0.65 < 0.001 0.64 0.46–0.89 0.008
Radscore 2.99 2.49–3.58 < 0.001 - - - 2.71 2.25–3.26 < 0.001
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