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cigarette liquid, damages epithelial cells 
in human small airways
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Abstract 

Background: Electronic cigarettes (e-cigarettes) are used worldwide as a substitute for conventional cigarettes. 
Although they are primarily intended to support smoking cessation, e-cigarettes have been identified as a gateway to 
smoking habits for young people. Multiple recent reports have described the health effects of inhaling e-cigarettes. 
E-cigarette liquid (e-liquid) is mainly composed of propylene glycol (PG) and glycerol (Gly), and the aerosol generated 
by these devices primarily contains these two components. Thus, this study aimed to evaluate the effects of PG and 
Gly on human small airway epithelial cells (SAECs).

Methods: SAECs were exposed to PG or Gly, and cell proliferation, cell viability, lactate dehydrogenase (LDH) release, 
DNA damage, cell cycle, and apoptosis were evaluated. Additionally, SAECs derived from chronic obstructive pulmo-
nary disease (COPD) patients (COPD-SAECs) were investigated.

Results: Exposure of SAECs to PG significantly inhibited proliferation (1%, PG, p = 0.021; 2–4% PG, p < 0.0001) and 
decreased cell viability (1–4% PG, p < 0.0001) in a concentration-dependent manner. Gly elicited similar effects but 
to a reduced degree as compared to the same concentration of PG. PG also increased LDH release in a concentra-
tion-dependent manner (3% PG, p = 0.0055; 4% PG, p < 0.0001), whereas Gly did not show a significant effect on 
LDH release. SAECs exposed to 4% PG contained more cells that were positive for phosphorylated histone H2AX 
(p < 0.0001), a marker of DNA damage, and an increased proportion of cells in the G1 phase (p < 0.0001) and increased 
p21 expression (p = 0.0005). Moreover, caspase 3/7-activated cells and cleaved poly (ADP-ribose) polymerase 1 
expression were increased in SAECs exposed to 4% PG (p = 0.0054). Furthermore, comparing COPD-SAECs to SAECs 
without COPD in PG exposure, cell proliferation, cell viability, DNA damage and apoptosis were significantly greater in 
COPD-SAECs.

Conclusion: PG damaged SAECs more than Gly. In addition, COPD-SAECs were more susceptible to PG than SAECs 
without COPD. Usage of e-cigarettes may be harmful to the respiratory system, especially in patients with COPD.
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Background
Electronic cigarettes (e-cigarettes) appeared in the early 
2000s in their current form and have since spread world-
wide [1]. Toxicant emission from e-cigarette aerosols 
has been reported to be less than that from conventional 
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cigarette smoke [2, 3]. E-cigarettes are used as devices to 
support smoking cessation for smokers, including those 
with chronic obstructive pulmonary disease (COPD) 
[4–6]. In contrast, these devices have been identified as a 
potential gateway to smoking habits for young people [7–
10]. With the increasing usage of e-cigarettes, the safety 
of individuals using these devices has become a matter of 
concern.

In recent years, various hazards of e-cigarette vaping 
have been reported, and the risks associated with e-cig-
arette usage have received attention. In 2019, outbreaks 
of e-cigarette- or vaping-product-associated lung injury 
(EVALI) were reported in the US [11, 12]. EVALI is cur-
rently believed to be caused by tetrahydrocannabinols 
and vitamin E acetate present in some e-cigarettes [13, 
14]. In addition to EVALI, other adverse effects of e-cig-
arette inhalation have been reported. For example, e-liq-
uid exposure causes COPD features in the lungs of mice 
[15], disruption of lung lipid homeostasis and impaired 
innate immunity in mice [16], and disruption of the pro-
tease-antiprotease balance [17]. Thus, e-cigarettes are by 
no means safer than conventional cigarettes.

In e-cigarette devices, e-cigarette liquids (e-liquids) are 
mainly composed of propylene glycol (PG) and glycerol 
(Gly), which add flavours and nicotine, and are heated in 
the device to generate aerosols without combustion [1]. 
PG and Gly are used as food additives and drug solvents 
and have been tested for safety; however, the safety of 
inhalation of these components has not been confirmed. 
PG and Gly are known to be oxidised to aldehydes on 
heating, which have been subsequently detected in 
e-cigarette aerosols [18]. Although some studies have 
evaluated the toxic effects of PG and Gly on human bron-
chial epithelial cells [19–21], most of these studies were 
designed to assess the exposure to e-cigarette vapour or 
PG/Gly mixtures; hence, the pure effects of PG and Gly 
without aldehydes remain unclear.

Thus, in the current study, we investigated whether PG 
and Gly themselves affect small airway epithelial cells 
(SAEC) proliferation and viability. Moreover, to investi-
gate these reactions in cells that had already been dam-
aged by cigarette smoke, we assayed the effects in SAECs 
derived from COPD patients (COPD-SAECs).

Methods
Cell culture and treatment
Commercially available primary human SAECs and 
COPD-SAECs were used in this study. SAECs and 
COPD-SAECs were purchased from LONZA (Basel, 
Switzerland). For SAECs, cells from healthy and non-
smoker donors were selected. Both sets of cells were 
cultured in small airway epithelial cell growth medium 
(LONZA) in accordance with the manufacturer’s 

instructions. Cells from passages 2–4 were used for the 
assays. Three batches of SAECs and COPD-SAECs were 
evaluated on two separate occasions in each experiment. 
PG (FUJIFILM WAKO Pure Chemical Corporation, 
Osaka, Japan) or Gly (FUJIFILM WAKO Pure Chemi-
cal Corporation) were added into the culture medium at 
concentrations of 0–4%.

Cell proliferation and viability assays
Cells were cultured in 96-well plates (5000 cells/well) 
with 100 μL of culture medium in each well. After 24 h of 
seeding, the medium was replaced with medium contain-
ing PG or Gly. Cells were assessed in triplicate in each 
condition. Each well was divided into four sections, and 
pictures of each section were taken every 3 h up to 96 h 
by using IncuCyte Zoom (Essen Bioscience, Ann Arbor, 
MI, USA) at 10 × magnification. Cell surface areas were 
calculated using the IncuCyte Zoom software (Essen 
Bioscience).

Cells were cultured in 96-well plates (5000 cells/well) 
with 100 μL of culture medium in each well. After 24 h of 
seeding, the medium was replaced with medium contain-
ing PG or Gly. Cells were assessed in triplicate in each 
condition. Cell viability was measured after 96 h exposure 
to 0–4% PG or Gly using the Cell Counting Kit-8 (CCK-8; 
Dojindo Laboratories, Kumamoto, Japan) in accordance 
with the manufacturer’s instructions. Lactate dehydro-
genase (LDH) release from the cells was measured after 
24 h exposure to 0–4% PG or Gly using the Cytotoxicity 
LDH Assay Kit-WST (Dojindo Laboratories) in accord-
ance with the manufacturer’s instructions.

DNA damage assay
Cells were cultured in 2-well chamber slides (50,000 
cells/well). After reaching approximately 70% confluence, 
the cells were treated with PG or Gly for 24 h and then 
fixed with 4% paraformaldehyde containing 0.1% Triton-
X and 250 mM HEPES for 15 min. For permeabilization, 
1% Triton-X was used. The blocking solution, which con-
tained the antibody of phosphorylated histone H2AX 
(γH2AX) and the secondary antibody, was included in 
the DNA damage detection kit (Dojindo Laboratories) 
and was used according to the manufacturer’s instruc-
tions. Images were captured with a fluorescence micro-
scope TCS-SP5 (Leica Microsystems, Wetzlar, Germany). 
All images were taken at 40 × magnification.

Cell cycle assay
Cells were cultured in 6-cm dishes (200,000 cells/dish) 
to approximately 70% confluence and then treated with 
PG or Gly for 24 h. After treatment, cells were harvested 
using 0.025% trypsin and centrifuged for trypsin removal. 
Subsequently, cells were treated with Cell Cycle Assay 
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Solution Deep Red (Dojindo Laboratories) and incu-
bated for 15 min at 37  °C according to the manufactur-
er’s instructions. Data were obtained using FACSCelesta 
(Becton Dickinson, Franklin Lakes, NJ, USA) counting up 
to 10,000 cells and analysed using FlowJo software (Bec-
ton Dickinson).

Apoptosis assay
Cells were cultured in 96-well plates (5000 cells/well) 
and 0.1% IncuCyte Caspase-3/7 Green Reagent (Essen 
Bioscience) was added to the medium with PG or Gly to 
detect caspase 3/7-activated cells. Cells were assessed in 
triplicate in each condition. Immunofluorescent images 
were taken at 3 h intervals up to 24 h at 10 × magnifica-
tion using IncuCyte Zoom (Essen Bioscience). Caspase 
3/7-positive cells were counted using the IncuCyte Zoom 
software (Essen Bioscience).

Western blot
Cells were cultured in 6-cm dishes (100,000 cells/dish). 
Approximately 70% confluent cells were exposed to 4% 
PG or Gly for 24  h, and proteins were extracted using 
RIPA buffer containing protease and phosphatase inhibi-
tors. Protein content was measured using the BCA Pro-
tein Assay Kit (Thermo Fisher Scientific, Waltham, MA, 
USA). Twenty micrograms of total protein was frac-
tionated by electrophoresis on 4–20% Mini-PROTEAN 
TGX Gels (Bio-Rad Laboratories, Hercules, CA, USA). 
Trans-Blot Turbo Transfer Pack (Bio-Rad Laborato-
ries) was used for transferring proteins, and membranes 
were blocked with PVDF Blocking Reagent for Can Get 
Signal (TOYOBO, Osaka, Japan) for 1  h between 25  °C 
and 28  °C. Membranes were then incubated with anti-
p21 monoclonal antibody (1:200; Cat. No. sc6246, Santa 
Cruz Biotechnology, Dallas, TX, USA), anti-cleaved poly 
(ADP-ribose) polymerase 1 (PARP1, 1:1000; Cat. No. 
ab32064, Abcam, Cambridge, MA, USA), or anti-β actin 
(1:1000; Cat. No. 4970, Cell Signalling Technology, Dan-
vers, MA, USA) at 4 °C overnight, followed by incubation 
with the appropriate horseradish peroxidase-conjugated 
secondary antibodies (1:5000; GE Healthcare, Pittsburgh, 
PA, USA) for 1  h at room temperature. Clarity west-
ern ECL substrate (Bio-Rad Laboratories) was used to 
detect the signals, which were captured using a Chemi-
Doc Touch (Bio-Rad Laboratories) and quantified using 
ImageLab software (Bio-Rad Laboratories).

Statistical analysis
Data were analysed using GraphPad Prism 8 (GraphPad 
Software, San Diego, CA, USA). Two-way ANOVA or 
unpaired-t test was used for analyses. Data are shown as 
mean ± standard error of the mean (SEM). Differences 
were considered significant at p < 0.05.

Results
PG inhibits cell proliferation and cell viability in SAECs
To assess the effects of PG and Gly on cell proliferation, 
we first exposed SAECs to 0–4% PG or Gly and measured 
the change in cell surface area by using IncuCyte. We 
found that PG exposure inhibited cell proliferation in a 
concentration-dependent manner, with a decrease in cell 
surface area after exposure to 1–4% PG (Fig. 1A and B). 
In contrast, exposure to 2–4% Gly inhibited cell prolifera-
tion (Fig. 1C and D). Comparing the effect of PG and Gly 
exposure on cell proliferation, 2–4% PG affected SAECs 
more significantly than Gly at the same concentration of 
(Fig. 1E).

We then evaluated cell viability by using CCK-8 
and LDH assays. Cell viability as measured by CCK-8 
decreased significantly after PG exposure in a concen-
tration-dependent manner (Fig.  2A). 2–4% Gly also 
decreased cell viability (Fig.  2B), but to a lesser extent 
than the same concentration of PG (Fig.  2C). LDH lev-
els in the cell culture supernatant increased significantly 
with 3–4% PG exposure, but not with Gly exposure, even 
at the same concentration (Fig. 2D and E).

PG causes DNA damage and induces cell cycle arrest 
in SAECs
To investigate the mechanism(s) underlying the inhi-
bition of cell proliferation and viability, we evaluated 
DNA damage and the cell cycle. After 24 h of exposure 
of 4% PG or Gly, γH2AX was more highly expressed in 
PG-exposed cells than in untreated cells (Fig. 3A and B). 
Additionally, Gly-treated cells showed an increase in the 
number of γH2AX-positive cells; however, the number 
was markedly reduced compared to cells treated with PG 
(Fig. 3B). We then performed cell cycle analysis by meas-
uring DNA content distribution after 24 h exposure of 4% 
PG or Gly. PG-exposed cells included more cells in the 
G1 phase and fewer cells in the S phase; these findings 
were more prominent in PG-treated cells than in Gly-
treated cells (Fig. 4A). Moreover, after 24 h of exposure to 
4% PG or Gly, the protein levels of p21, a cyclin-depend-
ent kinase inhibitor that regulates the cell cycle in the G1 
phase [22] (Fig.  4B), was significantly increased by PG 
exposure compared with control, but not by Gly expo-
sure (Fig.  4C). Furthermore, PG-treated cells showed 
higher protein levels of p21 compared with Gly-treated 
cells (Fig. 4C).

PG induces apoptosis in SAECs
Since PG induced cell cycle arrest in the G1 phase, we 
next examined whether PG leads to apoptosis by count-
ing caspase 3/7-activated cells at different time points. 
After PG or Gly exposure at concentrations of 0–4% 
for 24 h, we found that 4% PG significantly induced cell 
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apoptosis in a time-dependent manner (Fig.  5A–C), 
whereas Gly did not (Fig. 5A, D, and  E). Then, we eval-
uated the expression of cleaved PARP1 protein. After 
24  h of exposure to 4% PG, the cleaved PARP1 level 
was significantly elevated; however, Gly treatment did 

not cause elevation of the protein level (Fig. 5F). These 
results indicate that a relatively high concentration of 
PG induced apoptosis whereas Gly did not have this 
effect even at the same concentration.

Fig. 1 PG inhibits cell proliferation in a concentration-dependent manner. SAECs were cultured with 0–4% PG or Gly. Cell confluency was assessed 
every 3 h up to 96 h using IncuCyte Zoom. A Effect of PG on cell confluency, time-course. B Effect of PG on cell confluency at 96 h. Data were 
compared with control (indicated as a grey bar). C Effect of Gly on cell proliferation, time-course. D Effect of Gly on cell confluency at 96 h. Data 
were compared with control (indicated as a grey bar). E Comparison of cell confluency after PG exposure and Gly exposure. Three batches of SAECs 
were evaluated on two separate occasions. Values are mean ± SEM. Statistical significance was determined using two-way ANOVA. PG propylene 
glycol, Gly glycerol, SAECs small airway epithelial cells, SEM standard error of the mean
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Fig. 2 PG decreases cell viability in a concentration-dependent manner. Cell viability was evaluated by using CCK-8 and LDH assays. The CCK-8 
assay was conducted after 96 h exposure to 0–4% PG or Gly. The LDH assay was conducted after 24 h exposure to 0–4% PG or Gly. A Effect of PG on 
cell viability by CCK-8. B Effect of Gly on cell viability by CCK-8. C Comparison of cell viability after PG exposure and Gly exposure. D Effect of PG on 
LDH release. E Effect of Gly on LDH release. Data are expressed as a relative value to control (indicated as a grey bar). Three batches of SAECs were 
evaluated on two separate occasions. Values are mean ± SEM. Statistical significance was determined using two-way ANOVA. PG propylene glycol, 
Gly glycerol, CCK-8 cell counting kit-8, LDH lactate dehydrogenase, SAECs small airway epithelial cells, SEM standard error of the mean
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Fig. 3 PG induces DNA damage. SAECs were cultured with 4% PG or Gly for 24 h. A Representative immunofluorescent images of the antibody 
reaction against γH2AX. Green signals indicate γH2AX-positive cells. Scale bar = 100 µm. B Ratio of γH2AX-positive cells to control (without PG 
and Gly). Three batches of SAECs were evaluated on two separate occasions. Values are mean ± SEM. Statistical significance was determined using 
two-way ANOVA. PG propylene glycol, Gly glycerol, SAECs small airway epithelial cells, SEM standard error of the mean
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COPD‑SAECs are more susceptible to PG than SAECs 
without COPD
In the current series of experiments, we found that PG 
has prominent effects on SAECs. We then compared 
SAECs from healthy donors and COPD-SAECs to eval-
uate the differences in their reactions to PG exposure. 
Regarding cell proliferation evaluated by IncuCyte, 
the cell surface area of COPD-SAECs was significantly 
decreased following exposure with 2% PG (Fig.  6A). 
Furthermore, COPD-SAECs showed significant inhibi-
tion of cell viability based on CCK-8 with 1%-3% PG 
(Fig. 6B). LDH levels were almost the same in both sets 

of cells (Fig.  6C). The ratio of γH2AX-positive and cas-
pase 3/7-positive cells was significantly higher in COPD-
SAECs compared to that in control cells after exposure to 
4% PG (Fig. 6D and E).

Discussion
Among the e-liquid components, PG inhibited cell prolif-
eration and decreased cell viability in SAECs, whereas the 
effects of Gly were less severe than those of PG. PG expo-
sure further increased the proportion of γH2AX-positive 
cells, which indicate DNA damage, and led to cell cycle 
arrest at the G1 phase; in contrast, Gly had a relatively 

Fig. 4 PG induces cell cycle arrest at the G1 phase. SAECs were cultured with 4% PG or Gly for 24 h. A Distribution of cell cycle phase in each group 
by flow cytometry. Data were compared with the control sample in the same phase respectively. B Relationship of p21 and cell cycle. C Effect of 
PG and Gly on p21 expression. Representative western blot images are shown. β-actin was used as a loading control. Band size is indicated on the 
upper right. Densitometric analysis of p21 expression, normalized to that of β-actin. Data are expressed as a relative value to control (without PG 
and Gly, indicated as a grey bar). Three batches of SAECs were evaluated on two separate occasions. Values are mean ± SEM. Statistical significance 
was determined using two-way ANOVA. PG propylene glycol, Gly glycerol, SAECs small airway epithelial cells, SEM standard error of the mean

(See figure on next page.)
Fig. 5 PG induces cell apoptosis. SAECs were cultured with 0–4% PG or Gly. Caspase 3/7-positive cells were assessed every 3 h up to 24 h using 
IncuCyte Zoom. Data were adjusted with cell surface area. A Representative images of SAECs exposure to 4% PG or Gly at 24 h. Green signals 
indicate caspase 3/7-positive cells. Scale bar = 300 µm. B Effect of PG on caspase 3/7-positive cell count, time-course. C Effect of PG on caspase 
3/7-positive cell count at 24 h. Data are expressed as a relative value to control (indicated as a grey bar). D Effect of Gly on caspase 3/7-positive 
cell count, time-course. E Effect of Gly on caspase 3/7-positive cell count at 24 h. Data are expressed as a relative value to control (indicated as 
a grey bar). F Effect of PG and Gly on cleaved PARP1 expression at 24 h. Representative western blot images are shown. β-actin was used as a 
loading control. Band size is indicated on the upper right. Densitometric analysis of cleaved PARP1 expression, normalized to that of β-actin. Data 
are expressed as a relative value to control (without PG and Gly, indicated as a grey bar). Three batches of SAECs were evaluated on two separate 
occasions. Values are mean ± SEM. Statistical significance was determined using Two-way ANOVA. PG propylene glycol, Gly glycerol, SAECs small 
airway epithelial cells, PARP poly (ADP-ribose) polymerase, SEM standard error of the mean
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Fig. 5 (See legend on previous page.)
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smaller effect. The effects of PG exposure eventually 
induced apoptosis, which was confirmed by the increased 
number of caspase 3/7-positive cells and cleaved PARP1 
expression in SAECs.

E-liquids are mainly composed of PG and Gly, along 
with added flavours and nicotine. PG is related to the 
taste, and Gly is added to facilitate aerosol generation. 
Thus, the main vapour contains large amounts of PG and 
Gly. The composition ratio of PG and Gly can be adjusted 
according to personal preference [23–25]. However, there 

is no definitive information on the long-term health 
effects of these compounds, especially in the respiratory 
system.

Evidence regarding the biological effects of e-ciga-
rette use has been increasing recently. There are several 
reports that PG and Gly inhibit cell proliferation and via-
bility in various types of cells [20, 26, 27]. However, most 
of these studies used a vapour or PG/Gly mixture. PG 
and Gly undergo heating to form aerosols, but the oxida-
tion reaction during this process results in the generation 

Fig. 6 COPD-SAECs are affected more by PG exposure. A Effect of PG on cell confluency at 96 h. B Effect of PG on cell viability by CCK-8. C Effect of 
PG on LDH release. D Effect of 4% PG on the ratio of γH2AX-positive cells at 24 h. E Effect of PG on caspase 3/7-positive cells at 24 h. Three batches 
of SAECs and COPD-SAECs were evaluated on two separate occasions. Values are mean ± SEM. Data are adjusted with control of each cell (without 
PG exposure). Statistical significance was determined using Two-way ANOVA and unpaired t- test. PG propylene glycol, SAECs small airway epithelial 
cells, COPD chronic obstructive pulmonary disease, CCK-8 cell counting kit-8, LDH lactate dehydrogenase, SEM standard error of the mean
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of aldehydes [18], which are harmful substances [28]. To 
reduce the generation of these compounds, products that 
aerosolise PG and Gly at low temperatures have been 
introduced. Therefore, we believe that the direct effects 
of PG and Gly, especially in respiratory cells, should be 
evaluated. We had previously reported that SAECs are 
more susceptible to cigarette smoke extract than large 
airway epithelial cells [29]. However, none of the previ-
ous studies evaluated the effects of PG and Gly by using 
SAECs; thus, the present study is the first to show the 
direct effects of PG and Gly on SAECs. The findings of 
this study clearly showed an inhibition of cell prolifera-
tion, decrease in the cell viability and increase in LDH 
release following PG exposure. Gly exposure also affected 
cell proliferation and viability, however the effects were 
clearly less severe than that of PG. Moreover, an increase 
in LDH release was not observed with Gly. Therefore, 
PG, the main component of e-liquid, is harmful to the 
human respiratory system.

Then, we evaluated DNA damage and cell cycle arrest. 
When DNA damage causes double-strand breaks, phos-
phorylation of Ser139 of H2AX, a histone H2A variant, 
occurs and leads to the formation of γH2AX [30]. DNA 
damaged cells are monitored at the G1/S checkpoint of 
the cell cycle, which leads to cell cycle arrest or cell apop-
tosis [31]. The transition of the G1 phase to the S phase in 
the cell cycle involves cyclin/CDK complexes, which are 
inhibited by p21 [22]. The current results showed that PG 
exposure increased the number of γH2AX-positive cells 
and G1 phase cells and decreased the number of cells in 
S phase, with more increased expression of p21 in PG-
exposed SAECs. These results indicate that PG induced 
DNA damage and cell cycle arrest at the G1 phase, which 
led to the inhibition of cell proliferation. Additionally, 
exposure to Gly increased the number of γH2AX-positive 
cells and the number of cells in the G1 phase; however, its 
effect was much less than that of PG. This result for Gly 
is consistent with the results of the cell proliferation and 
viability assays.

Cellular DNA damage can trigger apoptosis in addi-
tion to cell cycle arrest [31, 32]. Damage to the cellular 
DNA promotes apoptosis by caspase 3/7 activation and 
PARP cleavage [33]. E-liquid or e-cigarette vapour con-
densate has been reported to cause apoptosis in human 
alveolar macrophages [34]; however, no previous report 
has described the relationship between PG/Gly and 
apoptosis in airway cells. The current study showed that 
PG exposure increased caspase 3/7-positive signals and 
cleaved PARP1 expression, indicating that PG clearly 
induced apoptosis in SAECs. Contrastingly, Gly did not 
induce apoptosis at all, suggesting that the effects of Gly 
are insufficient to induce apoptosis compared with the 
same concentration of PG.

As mentioned earlier, e-cigarettes are often used as 
a supportive device for smoking cessation, and COPD 
patients have higher odds of using e-cigarettes compared 
to non-COPD patients [6]. Defective regenerative abil-
ity in the airway and epithelial barrier dysfunction has 
been previously reported in COPD patients [35–37]. In 
the current study, COPD-SAECs revealed inhibition of 
cell confluence and a significant decrease of cell viability 
compared with SAECs derived from healthy donors. In 
contrast, LDH levels were not different, which may indi-
cate the same degree of cellular membrane injury. How-
ever, cellular DNA damage and apoptosis were observed 
more clearly at relatively high concentrations of PG expo-
sure in COPD-SAECs. These results indicate that COPD-
SAECs have a higher susceptibility to PG than control 
SAECs. Therefore, we believe that e-cigarettes should 
not be recommended, especially for COPD patients, even 
when quitting conventional cigarettes.

A limitation of this study was that the actual concentra-
tions of PG and Gly in the airway were uncertain. In this 
study, the concentrations of PG and Gly ranged from 0.5 
to 4%. The predicted deposition of the e-cigarette main-
stream aerosol is 15–45% [38]. When 1  mL of e-liquid 
composed of PG and Gly was inhaled, assuming that the 
total liquid on the airway surface was 3 mL, the e-liquid 
concentration in the airway surface liquid was estimated 
to be 5–15% [20]. If the e-liquid contained 50% PG and 
Gly each, both components would be in the range of 2.5–
7.5%, which is not substantially different from the con-
centrations used in this study. Finally, the COPD-SAECs 
used in the current study were commercially available, 
and we did not have clinical information regarding their 
donors. Thus, we could not investigate the relationship 
between the experimental results and clinical informa-
tion, such as smoking history and COPD severity.

Conclusion
Among the e-liquid components, PG predominantly 
inhibited cell proliferation and viability by enhanc-
ing DNA damage and cell cycle arrest in SAECs. PG 
also promoted apoptosis in SAECs, whereas Gly did 
not. This study presents the first evidence demonstrat-
ing that PG can injure SAECs directly and is a harmful 
agent in the human respiratory system. In addition, some 
of the results were more prominent in cells from COPD 
patients, suggesting that e-cigarette inhalation may be 
more harmful to COPD patients.
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