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FGL1 regulates acquired resistance to
Gefitinib by inhibiting apoptosis in non-
small cell lung cancer
Cuilan Sun1†, Weiwei Gao1†, Jiatao Liu2, Hao Cheng1 and Jiqing Hao1*

Abstract

Background: This study investigated the role of fibrinogen-like protein 1 (FGL1) in regulating gefitinib resistance of
PC9/GR non-small cell lung cancer (NSCLC).

Methods: The effect of different concentrations of gefitinib on cell proliferation were evaluated using the CCK-8
assay. FGL1 expression in the normal human bronchial epithelial cell line Beas-2B, as well as four lung tumor cell
lines, H1975, A549, PC9, and PC9/GR, was investigated by using western blotting and qRT-PCR. FGL1 was knocked
down using small interfering RNA to evaluate the effects of FGL1 on PC9 and PC9/GR. The correlation between
FGL1 expression and gefitinib resistance was determined in vitro via CCK-8 and colony formation assays, and flow
cytometry and in vivo via flow cytometry and immunohistochemistry.

Results: FGL1 expression was significantly upregulated in non-small cell lung cancer cells with EGFR mutation and
higher in the gefitinib-resistant NSCLC cell line PC9/GR than in the gefitinib-sensitive NSCLC cell line PC9. Further,
FGL1 expression in PC9 and PC9/GR cells increased in response to gefitinib treatment in a dose-dependent manner.
Knockdown of FGL1 suppressed cell viability, reduced the gefitinib IC50 value, and enhanced apoptosis in PC9 and
PC9/GR cells upon gefitinib treatment. Mouse xenograft experiments showed that FGL1 knockdown in PC9/GR
tumor cells enhanced the inhibitory and apoptosis-inducing actions of gefitinib. The potential mechanism of
gefitinib in inducing apoptosis of PC9/GR cells involves inhibition of PARP1 and caspase 3 expression via
suppression of FGL1.

Conclusions: FGL1 confers gefitinib resistance in the NSCLC cell line PC9/GR by regulating the PARP1/caspase 3
pathway. Hence, FGL1 is a potential therapeutic target to improve the treatment response of NSCLC patients with
acquired resistance to gefitinib.

Keywords: Fibrinogen-like-protein 1, Epidermal growth factor receptor, Non-small cell lung cancer, Gefitinib
resistance, Apoptosis

Background
Lung cancer is the main cause of cancer-related mortal-
ity globally [1]. In China, 7,33,300 lung cancer cases
were diagnosed in 2015 [2]. Non-small cell lung cancer

(NSCLC) accounts for approximately 85% of lung cancer
cases, and approximately 80% of NSCLC patients miss
the best opportunity of treatment by the time of diagno-
sis. With a five-year survival rate of only 15%, prognosis
is poor [3]. The frequency of epidermal growth factor re-
ceptor (EGFR) gene mutation in non-smoking NSCLC
patients is as high as 60% in Asia [4]. Especially
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abnormal EGFR activation can promote the progression
of NSCLC [5].
EGF receptor tyrosine kinase inhibitors (EGFR-TKIs)

are currently used as the first-line treatment in advanced
NSCLC patients harboring EGFR mutation [6, 7]. Al-
though these TKIs have good initial efficacy, approxi-
mately 65% of EGFR-TKI-sensitive NSCLC patients
eventually develop acquired resistance to these drugs
after 9–13 months of treatment [8, 9]. The resistance to
EGFR-TKI can be primary or acquired. The mechanisms
of primary drug resistance include KRAS mutation and
different EGFR mutation sites inducing different levels
of sensitivity. The mechanisms of acquired resistance to
EGFR-TKIs include secondary mutation of T790M and
C797S in EGFR [10] and activation of signaling pathways
downstream of EGFR through BRAF fusion and PIK3CA
mutation [11], bypass activation, and cell phenotype
transformation [12, 13]. Particularly, the activation of
downstream and bypass signaling plays an important
role in overcoming drug resistance. Further, substantial
evidence indicates that numerous cytokines related to
cell proliferation play key roles in pathways that promote
tumor cell proliferation and suppress their apoptosis [14,
15], thereby significantly affecting patient prognosis.
Benefited from the results above, some corresponding
inhibitors like MEK inhibitors (trimetazidine) [16, 17],
MET-TKIs (tepotinib and cabozantinib) [18, 19], PI3K
inhibitor [20], and STAT3 and Src inhibitors [21, 22]
have been developed widely applied in clinical and show-
ing good clinical effects. Some newly discovered cyto-
kines, including YES (pp62c-yes) [23], YES/YES-
associated protein 1 [24], and NF-1 [25], can increase
the sensitivity of NSCLC cells to EGFR-TKIs by activat-
ing the AKT or MAPK pathway, showing great research
benefits. However, in 20–30% of cases of acquired resist-
ance, the mechanism underlying resistance development
remains unclear [26, 27]. Thus, numerous studies have
focused on the underlying mechanism of acquired resist-
ance to EGFR-TKIs in NSCLCs. It is well known that
one of the important mechanisms of gefitinib resistance
in NSCLCs is the activation of downstream or bypass
pathways of cell growth and proliferation through cer-
tain unknown and key cytokines.
Fibrinogen-like protein 1 (FGL1), a member of the fi-

brinogen family, is a specific hepatocyte mitogen [28,
29]. FGL1 regulates proliferation factor expression, pro-
motes liver regeneration, and repairs liver damage [30–
32]. Recently, FGL1 overexpression has been reported in
many solid tumors, especially in NSCLC, and was associ-
ated with shorter 5-year overall survival [7]. Studies have
shown that bone marrow stromal cells (BMSCs) overex-
press FGL1 to repair acute liver injury by regulating p-
STAT/STAT3 [33], and overexpression of FGL-1 was as-
sociated with epithelial intermediate transformation and

angiogenesis of LKB1-mutant lung adenocarcinoma cells
[34]. FGL1 has also been reported to regulate mitochon-
drial activity and oxidative phosphorylation, which are
related to cell growth and proliferation. This may be me-
diated by EGFR activation via direct phosphorylation of
EGFR or through non-receptor tyrosine kinase SRC,
which activates the ERK/p-ERK pathway to promote cell
proliferation [22]. Importantly, FGL1 expression not
only affects the regeneration of hepatocytes, but may
also regulate the growth and proliferation of tumor cells
due to its role in cell proliferation pathways. However,
the possible role of FGL1 in regulating NSCLC cell pro-
liferation and acquired resistance to gefitinib has not
been reported to date.
In the present study, we used the NSCLC cell line PC9

and the gefitinib-resistant PC9 cell line PC9/GR to in-
vestigate the role of FGL1 in acquired resistance to gefi-
tinib in NSCLC. Our results show that FGL1 is a
potential target for overcoming EGFR-TKI resistance in
NSCLC patients.

Methods
Cells and culture conditions
The NSCLC cell line PC9 and the gefitinib-resistant PC9
cell line PC9/GR were purchased from the cell bank of
the Chinese Academy of Sciences (Shanghai, China).
BEAS-2B, A549, and H1975 cells, originally purchased
from the cell bank of the Chinese Academy of Sciences,
were provided by the Department of Immunology, An-
hui Medical University. BEAS-2B, A549, and PC9 cells
were cultured in high-glucose DMEM medium
(SH30022.01B; HyClone, Beijing, China) supplemented
with 10% fetal bovine serum (11011–8611; Sijiqing Bio-
technology, Hangzhou, China) and 1% penicillin-
streptomycin (3810-74-0; Sigma, USA) at 37 °C in the
presence of 5% CO2. Gefitinib (MB1112; Meilune, Da-
lian, China) was added to the culture medium at a con-
centration of 0.1 μmol/L to sustain the drug resistance
phenotype of PC9/GR cells. H1975 cells were cultured
in RPMI 1640 medium (SH30809.01B; HyClone, USA).

Small interfering (si)RNA transfection
FGL1 expression was knocked down using siRNAs de-
signed at GenePharma (Shanghai, China). The target se-
quences were as follows: FGL1-siRNA1, GGAGGA
GGAUGGACUGUAATT; FGL1-siRNA2, GCCGUU
AUGCACAAUAUAATT; FGL1-siRNA3, GCAAAC
CUGAAUGGUGUAUTT. Blank siRNA was used as a
control (NC-siRNA). Cells were seeded in 6-well plates
(1.0 × 105 cells/ml) and cultured for 24 h. When the cells
reached 40–60% confluence, they were transfected with
the siRNAs in accordance with the instructions of the
Lipofectamine™ 2000 kit (11668–027; Invitrogen, USA).
Non-treated PC9/GR cells were included as a control
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group. Then, the cells were treated with gefitinib (gefi-
tinib and gefitinib+FGL1-siRNA groups). After 48 h of
transfection, total RNA was extracted using TRIzol re-
agent (R4801–01; Magen, Beijing, China). FGL1 knock-
down was verified by RT-qPCR and western blotting.
FGL11-siRNA2 and FGL1-siRNA3 produced the most
stable interference effects in tests conducted at Shanghai
Jikai Company and were selected for use in experiments.

qRT-PCR
Total RNA was isolated from PC9/GR tumors collected
from mice (details on the mice used and ethical clear-
ance of the study are given in a section below) and
NSCLC cells using TRIzol reagent and reverse-
transcribed into cDNA using the PrimeScript™ One Step
RT-PCR kit (RR036A; Takara, Japan). PCRs were run
using TB Green™ Premix Ex Taq™ II (RR820A, Takara)
on a LightCycler96 PCR (Roche, USA). GAPDH was
used as internal control to normalize relative gene ex-
pression by the 2–ΔΔ CT method.

Cell viability assay
Stably transfected PC9 or PC9/GR cells were seeded into
96-well plates at 2.5 × 104 cells/well and cultured for 24
h. Then, the cells were cultured in the presence of differ-
ent concentrations of gefitinib (0, 0.6125, 1.25, 2.5, 5, 10,
20, and 40 μmol/L) for 48 h. CCK-8 reagent (BB-4202-
500 T; BestBio, Nanjing, China) was added (10 μl/well)
and the plate was incubated for another 2 h. The absorb-
ance (A) at 450 nm was measured using a microplate
reader (Stat Fax-4200, USA), and the cell survival rate
was calculated by using the following formula: cell sur-
vival rate (%) = [(administration group A – negative con-
trol group A)/(non-administration group A – Negative
control group A)] × 100%. The half-maximal inhibitory
concentration (IC50) was calculated based on the rela-
tive survival curve using GraphPad Prism v. 7.0 (Graph-
Pad Software, CA, USA).

Apoptosis detection by flow cytometry
Stably transfected PC9 cells and PC9/GR cells were
seeded in 6-well plates at 3 × 105 cells/well and cultured
in the presence of different concentration of gefitinib
(0.2 or 8 μmol/L) for 48 h. Purified removed tumor cells
were adjusted to 1 × 106/L. The apoptotic rates of NSCL
C cells and tumor tissues were evaluated by flow cytom-
etry (FACScan, BD Bioscience) using an Annexin-V-
FITC/PI apoptosis kit (ads5001; Absin, Shanghai, China).

Colony formation assay
Transfected PC9 and PC9/GR cells were seeded in 6-
well plates at 1 × 103 cells/well and cultured in the pres-
ence of different concentrations of gefitinib (0.2 or
5 μmol/L). The medium was replaced every 3 days for 2

weeks. Then, the cells were fixed with 4% paraformalde-
hyde (BL539A; Biosharp, Shanghai, China) and stained
with 0.1% crystal violet (46364-250MG; Sigma-Aldrich).
Colonies containing more than 50 cells were counted
randomly under a light microscope (DM3000; Leica,
Germany).

Western blot analysis
Stably transfected PC9 cells and PC9/GR cells were
seeded in 6-well plates at 3 × 105 cells/well and cultured
for 48 h. The cells were lysed in RIPA buffer containing
1% PMSF. A BCA protein kit (PC0020; Beijing Solabo)
was used to determine the protein concentration. The
protein extracts were separated by 10% SDS-PAGE,
transferred onto PVDF membranes (ISEQ00010; Milli-
pore, USA) and then probed with specific antibodies
against FGL1 (ab197357; Abcam, USA), EGFR (26,462,
646; Cell Signaling Technology, USA), p-EGFR Y1173
(ab5644; Abcam), p-EGFR Y1068 (ab5644; Abcam),
PARP1 (ab4830; Abcam), caspase 3 (ab13847; Abcam),
and β-actin (60008–1-Ig; Proteintech, Wuhan, China).
After incubation with HRP-coupled secondary antibody,
the protein bands were detected in an ECL Advance De-
tection System (Amersham Biosciences, USA) using a
SuperSignal West Femto Tril Kit (34,094; Thermo USA).
The gray-scale value of all bands was analyzed using the
ImageJ software.

Lentivirus infection
Lentivirus harboring FGL1-siRNA2 was generated by
GeneChem Co., Ltd. (Shanghai, China). Briefly, PC9/GR
cells (1 × 105) were seeded into a 6-well plate. When
they reached 20% confluence, they were transfected with
lentivirus carrying the siRNA and empty control lenti-
viral vector at MOI value of 20 (1 × 107 virus particles).
The lowest lethal concentration of puromycin in PC9/
GR cells in the control group was screened by adding
puromycin at 0.25, 0.5, 1, or 2 μg/mL. After 48 h of
puromycin treatment, the lowest drug concentration
causing death of the control cells was 1 μg/mL. Total
RNA was extracted from the cells using TRIzol reagent,
and effective knockdown was verified by RT-qPCR and
western blotting. FGL1-siRNA2, which produced the
best interference effect, was used for animal
experiments.

Nude mouse xenograft model
Female BALB/c nude mice (4–5 weeks of age and weigh-
ing 16–20 g) were purchased from the experimental ani-
mal center of Chinese Academy of Sciences (Shanghai,
China) and were acclimatized for 1 week. The mice were
maintained in a specific pathogen-free environment and
were given free access to standard chow and water. PC9/
GR cells (1 × 107) stably transfected with FGL1-siRNA
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or NC-siRNA were subcutaneously inoculated into the
right flanks of the mice (n = 6 mice in each group) to es-
tablish a lung adenocarcinoma model to investigate the
effect of FGL1 on cell proliferation in vivo. When the
average tumor volume reached 50 mm3, half of the mice
in each group were administered gefitinib (30 mg/kg),
while the other half was administered the same volume
of PBS by oral gavage every day. Every 3 days, the mice
were weighed and tumor sizes were assessed with a
digital caliper. Tumor volume was calculated according
to the formula: V = (a × b2)/2, where a and b are the
maximal and minimal diameters in millimeters, respect-
ively. Twenty-one days later, the mice were killed and
tumors were weighed immediately. All animal experi-
ments were performed with the approval of the Research
Ethic Committee and conducted according to the insti-
tutional guidelines of the Animal Care and Use Commit-
tee at the First Affiliated Hospital of Anhui University.

Immunohistochemistry
The resected tumor tissues were soaked in formalin and
dehydrated, paraffin-embedded, and sectioned at 4 μm
thickness. The sections were deparaffinized, hydrated,
and microwaved for antigen removal. H2O2 (3%) was
used to eliminate endogenous peroxidase activity. After
incubation in 5% bovine serum albumin (A1128; Genti-
hold, Beijing, China) for 20 min to block non-specific
binding, the sections were incubated with primary anti-
body (diluted at 1:200) at 4 °C overnight followed by a
biotinylated secondary antibody (diluted at 1:500) at
37 °C for 60 min. Then, the sections were stained with
diaminobenzidine and counterstained with hematoxylin.
Finally, all tissue sections were incubated in alcohol and
xylene. The sections were observed under an inverted
fluorescence microscope (Olympus, Japan) and

photographs were acquired in five random fields (magni-
fication, 400×) of each sample. Stained cells were
counted, and the positive stain rate was analyzed using
ImageJ.

Statistical analysis
Data were analyzed using SPSS 22.0 statistical software.
All experiments were repeated at least thrice. The ex-
perimental data are expressed as the mean ± standard
deviation (SD). Students t-test ‘was used to compare the
means of two groups of independent samples, and re-
sults with P < 0.05 were considered statistically
significant.

Results
Effects of gefitinib on the proliferation of A549, H1975,
PC9, and PC9/GR cells
To probe the sensitivity of different NSCLC cell lines to
gefitinib, four NSCLC cell lines having a different EGFR
status, including A549 (wild-type EGFR), H1975 (L858R
and T790M mutation in EGFR exon 21-, PC9 (EGFR
exon 19 deletion), and PC9/GR (gefitinib acquired resist-
ant PC9 cells), were exposed to various concentrations
of gefitinib (0, 0.625, 1.25, 2.5, 5, 10, 20 and 40 μmol/L)
for 48 h. As shown in Fig. 1a, CCK-8 analysis disclosed
that cell ability to PC9 cells significantlyl reduced in a
concentration-dependent manner upon gefitinib treat-
ment, whereas it had a minimal effect on cell viability at
concentrations lower than 1.0 μmol/L. Moreover, cell
viability was higher in the other gefitinib-resistant NSCL
C cell lines (A549, H1975 and PC9/GR) than in PC9
cells. The IC50 values of the above-mentioned four
NSCLC cells for gefitinib were calculated and shown in
Fig. 1b and c, were 18.90 μmol/L, 16.40 μmol/L,
1.794 μmol/L and 15.99 μmol/L for A549, H1975, PC9,

Fig. 1 Sensitivity of A549, H1975, PC9, and PC9/GR cells to gefitinib (x ± s, n = 5). a Inhibition of cell proliferation of A549, H1975, PC9, and PC9/
GR cells by gefitinib as measured by CCK-8 assays. b IC50 values of gefitinib in A549, H1975, PC9, and PC9/GR cells, calculated using GraphPad.
Students t-test‘was used to compare the means of IC50 values of A549, H1975, PC9, and PC9/GR cells by gefitinib. *P < 0.05 compared with A549;
#P < 0.05 compared with H1975; △P < 0.05 compared with PC9
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and PC9/GR, respectively (P < 0.05). Take together, these
data indicated that the four NSCLC cell lines have differ-
ent sensitivity to gefitinib, with PC9 cells being the most
sensitive.

Upregulation of FGL1 correlates with gefitinib resistance
To explore the role of FGL1 in NSCLC cell resistance to
gefitinib, we first measured FGL1 expression levels in
normal bronchial epithelial cells BEAS-2B, and the four
human NSCLC cell lines, A549, H1975, PC9, and PC9/
GR, by western blot analysis and RT-qPCR. As shown in
Fig. 2a, FGL1 expression was significantly higher in
tumor cells (except A549 cells) than in normal BEAS-2B
cells (P < 0.01), and among the four tumor cell lines,
PC9 and PC9/GR cells exhibited higher FGL1 protein
levels than A549 and H1975 cells (P < 0.05). The RT-
qPCR results were consistent with the western blot data.
These results suggested that FGL1 expression may relate
to the mutation status of EGFR and contribute to gefi-
tinib acquired resistance in NSCLC cells. To investigate
whether FGL1 plays a role in the acquired resistance of
NSCLC cells to EGFR-TKIs, we treated A549, H1975,

PC9, and PC9/GR cells with gefitinib at various concen-
trations (0, 0.625 1.25, 2.5, 5, 10, 20, and 40 μmol/L).
The results showed that gefitinib significantly increased
FGL1 expression in PC9 and PC9/GR cells at both the
mRNA and protein levels, in a concentration-dependent
manner (P < 0.05) (Fig. 2b), whereas it had a minimal ef-
fect on FGL1 expression in A549 and H1975 cells (only
mRNA expression increased in a concentration-
dependent manner in H1975; P < 0.05). Together, these
results indicated that the upregulation of FGL1 may be
correlated with gefitinib acquired resistance in NSCLC
cells with EGFR mutation.

Knockdown of FGL1 expression overcomes acquired
resistance to gefitinib in PC9/GR cells
To investigate the effects of FGL1 on acquired resistance
to gefitinib in NSCLC cells, we knocked down FGL1 in
PC9/GR using siRNA. After siRNA transfection for 48 h,
FGL1 expression was strongly reduced at both the
mRNA and protein levels (Fig. 3a, P < 0.01). Next, we
treated the FGL1-knockdown PC9/GR cells with gefi-
tinib at different concentrations (0, 0.625, 1.25, 2.5, 5,

Fig. 2 FGL1 expression is upregulated in gefitinib-resistant NSCLC cells (x ± s, n = 5). a Protein levels of EGFR and FGL1 in BEAS-2B, A549, H1975,
PC9, and PC9/GR cells as measured by western blotting. b mRNA expression of EGFR and FGL1 in BEAS-2B, A549, H1975, PC9, and PC9/GR cells as
measured by RT-qPCR. c Western blot analysis of FGL1 in A549, H1975, PC9, and PC9/GR cells treated with gefitinib. d mRNA level of FGL1 in
A549, H1975, PC9, and PC9/GR cells treated with gefitinib as detected by RT-qPCR. The means of protein and mRNA levels of EGFR and FGL1 in
BEAS-2B, A549, H1975, PC9, and PC9/GR cells was compared by Students t-test‘. *P < 0.05 compared with A549; #P < 0.05 compared with H 1975;
△P < 0.05 compared with PC9
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10, 20, and 40 μmol/L) for 48 h. CCK-8 assays showed
that downregulation of FGL1 significantly reduced cell
viability and lowered the IC50 values (1.445 ±
0.617 μmol/L vs. 18.716 ± 2.167 μmol/L vs. 20.865 ±
3.164 μmol/L) in PC9/GR cells in response to gefitinib
treatment as compared to non-transfected PC9/GR
cells (Fig. 3b and c, P < 0.01). Flow cytometry (Fig.
3d) and colony-formation assays (Fig. 3e) revealed
that FGL1 knockdown enhanced apoptosis and sup-
pressed the colony number of PC9/GR cells, and even
led to a considerable increase in gefitinib-induced
apoptosis and a substantial decrease in colony num-
ber in PC9/GR cells treated with gefitinib (P < 0.05).
These results suggested that knockdown of FGL1 in-
creased the acquired resistance to gefitinib in PC9/GR
cells, and overexpression of FGL1 contributed, at least
in part, to apoptosis induced by gefitinib in PC9/GR
cells in vitro.

Knockdown of FGL1 enhances the antitumor effects of
gefitinib in vivo
To investigate the effects of FGL1 on the sensitivity of
PC9/GR cells to gefitinib in vivo, a xenograft mouse

model was established by subcutaneously injecting PC9/
GR cells that had been transfected with lentivirus har-
boring NC-siRNA or FGL1-siRNA into BALB/c nude
mice. When the average tumor volume reached 50mm3,
gefitinib was given daily at 30 mg/kg by oral gavage, after
which tumor volume and body weight were monitored
every other day. As shown in Fig. 4a, there was no sig-
nificant difference in body weight between the groups
(P > 0.05). However, tumor volumes (Fig. 4b, P < 0.05)
and tumor weights (Fig. 4c, P < 0.05) were significantly
lower in FGL1-siRNA-treated mice and in mice treated
with FGL1-siRNA and gefitinib than in mice treated
with NC-siRNA or gefitinib alone. Immunohistochemis-
try of the tumor tissues revealed that knockdown of
FGL1 alone or co-culture with gefitinib significantly de-
creased the Ki-67 levels (Fig. 4d, P < 0.05). Flow-
cytometric analysis of cells isolated from freshly isolated
tumor tissues revealed that both FGL1 knockdown alone
and FGL1 knockdown plus with gefitinib significantly in-
creased the apoptotic rate (Fig. 4e, P < 0.05). Collectively,
these results suggested that FGL1 knockdown suppresses
tumor growth and significantly enhances the antitumor
effect of gefitinib in vivo.

Fig. 3 Knockdown of FGL1 increases the sensitivity of PC9/GR cells to gefitinib in vitro (x ± s, n = 3). a Relative expression of FGL1 protein in PC9/
GR cells after FGL1 interference as measured by western blotting. b Relative expression of FGL1 mRNA in PC9/GR cells after FGL1 knockdown as
measured by RT-qPCR. c Proliferation of PC9/GR cells inhibited by gefitinib after FGL1 knockdown as measured by CCK-8. d Comparison of IC50
values of gefitinib in PC9/GR cells after FGL1 knockdown. e Colony-forming potential was assessed in PC9/GR cells. f Apoptotic rate of PC9/GR
cells as evaluated by flow cytometry. Control: blank control group; NC-siRNA: mice transfected with NC-siRNA; Gefitinib: mice treated with
gefitinib alone; FGL1-siRNA: mice treated with FGL1-siRNA-transfected cells; gefitinib+FGL1-siRNA: mice transfected with FGL1-siRNA and treated
with gefitinib; *P < 0.05 compared with control group; **P < 0.01 compared with control group; #P < 0.05 compared with gefitinib group; (P < 0.05
compared with gefitinib group; △P < 0.01 compared with FGL1-siRNA group; &P < 0.01 compared with PC9 cells
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Knockdown of FGL1 overcomes acquired resistant to
gefitinib via activating apoptotic pathway
To clarify the potential mechanisms by which FGL1 me-
diates gefitinib acquired resistance, we measured the ex-
pression of proteins related to apoptosis and
proliferation in tumor cells by western blot analysis.
PARP1 is a major member of the PARP family, and it
plays an important role in DNA repair and cell death,
proliferation, and differentiation as a sensor and signal
transducer. Caspase 3 is the most important terminal
shear enzyme involved in the process of cell apoptosis; tt
recognizes the DEVD motif in the nuclear localization
signal of its substrate PARP1 and disrupts the activity of
the enzyme. EGFR is activated through phosphorylation.
Therefore, we detected p-EGFR(1173) and p-
EGFR(1068). As shown in Fig. 5a, knockdown of FGL1
expression in PC9/GR cells significantly decreased the
protein levels of EGFR, p-EGFR(1173), p-EGFR(1068),
whereas it decreased the levels of PARP1 and caspase 3,
along with increased expression of cleaved PARP1 and
cleaved caspase 3 (all P < 0.05). We detected the above-
mentioned apoptosis-related proteins in tumor tissues
freshly collected from mice inoculated with FGL1-
siRNA-transfected PC9/GR cells and treated or not with

gefitinib. As expected, gefitinib alone inhibited the ex-
pression of EGFR, p-EGFR (1173), and p-EGFR (1068),
but did not affect the levels of PARP1 and caspase 3,
whereas knockdown of FGL1 plus gefitinib treatment
not only significantly decreased the protein levels of p-
EGFR (Y1173 and Y1068), but also increased cleaved
PARP1 and cleaved caspase 3 levels by cleaving PARP1
and caspase 3 (Fig. 5b, all P < 0.05). In summary, FGL1
depletion promotes the sensitivity of PC9/GR cells to ge-
fitinib in vitro or in vivo, partly via activation of the
PARP1/caspase 3 pathway.

Inhibition of FGL1 enhances the antitumor effects of
gefitinib via inducing apoptosis in PC9 cells
To investigate whether FGL1 has the same apoptosis-
promoting effect in gefitinib-sensitive NSCLC cells, we
also knocked down FGL1 expression in PC9 cells using
siRNA. As shown in Fig. 6a and b, FGL1 expression was
obviously reduced in PC9 cells transfected with siRNA
(P < 0.05). We found that FGL1 knockdown not only in-
creased the sensitivity to gefitinib of PC9 cells, but also
affected their survival in vitro. FGL1 knockdown signifi-
cantly reduced cell proliferation (Fig. 6c),IC50 values for
gefitinib and colony formation (Fig. 6e) and substantially

Fig. 4 FGL1 depletion enhances the sensitivity of NSCLC cells to gefitinib in vivo (x ± s, n = 3). a Mice weight was monitored every three days in
the different treatment groups. b Tumor size was monitored every three days in the different treatment groups. c Tumor weight was monitored
in the different treatment groups. d Protein expression of Ki-67 in tumor tissues of mice of the different treatment groups as measured by
immunohistochemistry. e Apoptosis in tumor tissues in each group as analyzed by flow cytometry. Control: blank control group; NC-siRNA: mice
transfected with NC-siRNA; Gefitinib: mice treated with gefitinib alone; FGL1-siRNA: mice treated with FGL1-siRNA-transfected cells;
gefitinib+FGL1-siRNA: mice transfected with FGL1-siRNA cells and treated with gefitinib. *P < 0.05 compared with control group; **P < 0.01
compared with control group; #P < 0.05 compared with gefitinib group; △P < 0.01 compared with FGL1-siRNA group
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increased the apoptotic rate (Fig. 6f) (all P < 0.05). Further-
more, FGL1 knockdown of significantly suppressed cell
proliferation and lowered the IC50 value (0.143 ±
0.085 μmol/L vs. 1.092 ± 0.106 μmol/L) in PC9 cells ex-
posed to gefitinib (Fig. 6c, P < 0.05). These data suggested
that FGL1 depletion also promotes apoptosis and increases
gefitinib sensitivity in PC9 cells. As for the mechanism, as
shown in Fig. 6g, proteins related to apoptosis were
expressed at the levels observed in PC9/GR cells after FGL1
knockdown in PC9 cells. Further, FGL1 knockdown inhib-
ited EGFR and EGFR phosphorylation (p-EGFR1173 and
p-EGFR1086), and decreased PARP1 and caspase 3 levels,
regardless of the presence of gefitinib (P < 0.05), which im-
plied that FGL1 promotes apoptosis of NSCLC cells PC9
through affecting the expression of PARP1/caspase 3 via
lowering the expression and phosphorylation of EGFR.

Discussion
The development of resistance to targeted therapy with
EGFR-TKIs remains a major clinical challenge. In the
present study, we found that FGL1 expression is

significantly increased in gefitinib-resistant PC9/GR
cells, and knockdown of FGL1 enhanced gefitinib-
induced apoptosis and inhibited cellular proliferation in
PC9/GR cells. Moreover, we found that FGL1 can regu-
late the phosphorylation level of EGFR and the expres-
sion levels of apoptosis-related proteins, such as cleaved
caspase 3 and cleaved PARP1. To the best of our know-
ledge, this is the first study to report the regulatory role
of FGL1 on NSCLC growth and acquired resistance to
gefitinib, suggesting that FGL1 may be a potential target
for NSCLC therapy.
EGFR-TKIs, such as gefitinib and erlotinib, have been

widely used in the clinical treatment of NSCLC. However,
patients eventually develop resistance due to various
mechanisms, such as the occurrence of secondary EGFR
mutations (T790M), activation of alternative pathways (c-
Met, HGF, AXL), downstream pathway abnormalities (K-
ras mutations, PTEN loss), or EGFR-TKI-mediated apop-
tosis pathway damage. Moreover, the clinical benefits of
these TKIs are still limited. Therefore, the precise mech-
anism of EGFR-TKI resistance should be elucidated.

Fig. 5 Effect of FGL1 knockdown on caspase 3 and PARP1 protein level in PC9/GR cells and removed tumors measured by western blot analysis
(x ± s, n = 3). a Western blot analysis was applied to determine the effect of FGL1 on EGFR, p-EGFR, caspase 3, and PARP1 protein in NSCLC
acquired-resistant cell line PC9/GR. b Western blot analysis was applied to determine the effect of FGL1 on EGFR, p-EGFR, caspase 3 and PARP1
protein expression in tumor tissues. Control: blank control group; NC-siRNA: mice transfected with NC-siRNA; Gefitinib: mice treated with gefitinib
alone; FGL1-siRNA: mice treated with FGL1-siRNA-transfected cells; gefitinib+FGL1-siRNA: mice transfected with FGL1-siRNA cells and treated with
gefitinib. *P < 0.05 compared with control group; **P < 0.01 compared with control group; #P < 0.05 compared with gefitinib group; △P < 0.01
compared with FGL1-siRNA group; &P < 0.01 compared PC9 cells
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Numerous studies have revealed that FGL1 is signifi-
cantly upregulated after liver injury and acts as a factor
regulating proliferation, promoting liver regeneration
and repairing liver injury by inducing ERK1/2 or STAT3
phosphorylation [31, 32, 35]. Several recent studies have
shown that FGL1 is significantly upregulated in NSCLC
patients and is closely correlated to the poor prognosis
of these patients [7, 31, 34, 36]. Further, FGL1 may be
an important factor involved in epithelial-mesenchymal
transition by influencing cell-cell adhesion and informa-
tion transmission [37, 38]. Our previous study also re-
vealed that loss of FGL1 did not induce but inhibited
epithelial-mesenchymal transition in PC9/GR cells [39].
More interestingly, Bie and colleagues found that FGL1
affected the proliferation of lung adenocarcinoma cells
by regulating the expression of vascular endothelial
growth factor, hypoxia-inducible factor, insulin-like
growth factor, and EGFR through functional experi-
ments and RNA sequencing [34]. However, no study fo-
cused on whether FGL1 is involved in EGFR-TKI in
acquired-resistance in NSCLC.
In the present study, we found that gefitinib increased

FGL1 expression in gefitinib-sensitive NSCLC cells in a
concentration-dependent manner, and gefitinib
acquired-resistant PC9/GR demonstrated higher levels
of FGL1 than their parental cells. Moreover, loss-of-

function experiments revealed that knockdown of FGL1
reduced cell viability and increased apoptosis in PC9/GR
cells upon gefitinib treatment both in vitro and in vivo.
In line with our findings, Wang and colleagues reported
that FGL1 expression was upregulated in NSCLC tissues
[33], and FGL1 expression was closely related to the
apoptosis of hepatocytes [34]. Taken together, our re-
sults suggest that overexpression of FGL1 may contrib-
ute to NSCLC cell proliferation and apoptotic resistance,
thus leading to EGFR-TKI acquired resistance; however,
the exact mechanism remains unclear.
Recent evidence suggests that elevated expression of

FGL1 can activate the p-STAT/STAT3 pathway to re-
pair injured hepatocytes through inhibiting apoptosis
and promoting proliferation [40], and FGL1 exert an
antiapoptotic effect on hepatocytes by inhibiting the up-
regulation of the apoptotic factors of Bax and caspase-9
and enhancing the expression of the antiapoptotic fac-
tors Bcl-2 and Bcl-xl [30, 35]. It has also been shown
that STAT3 signaling is involved in the regeneration and
apoptosis of liver injury [33, 41, 42], and phosphorylated
STAT3 regulated the expression of Bax, Bcl-2, and cell
cycle-regulatory genes (including c-fos, c-myc, and cyc-
lin), indicating its role in cell proliferation and apoptosis
[43]. Although overexpression of FGL1 has been con-
firmed in several tumors and contributes to poor

Fig. 6 Effect of FGL1 knockdown on PC9 cells. a Relative expression of FGL1 protein in PC9 cells after FGL1 knockdown as measured by western
blotting. b Relative expression of FGL1 mRNA in PC9 cells after FGL1 knockdown as measured by RT-qPCR (x ± s, n = 3). c Proliferation of PC9 cells
inhibited by gefitinib after FGL1 knockdown as measured by CCK-8 assy. d Comparison of IC50 values of gefitinib in PC9 cells before and after
FGL1 interference. e Colony-forming potential assessed in PC9 cells and PC9 cells. f Apoptotic rate of PC9 cells as evaluated by flow cytometry. g
Western blot analysis of the effect of FGL1 on EGFR, p-EGFR, caspase 3 and PARP1 protein in the sensitive NSCLC cell line PC9. Control: blank
control group; NC-siRNA: mice transfected with NC-siRNA; Gefitinib: mice treated with gefitinib alone; FGL1-siRNA: mice treated with FGL1-siRNA-
transfected cells; gefitinib+FGL1-siRNA: mice transfected with FGL1-siRNA cells and treated with gefitinib. *P < 0.05 compared with control group;
**P < 0.01 compared with control group; #P < 0.05 compared with gefitinib group; △P < 0.01 compared with FGL1-siRNA group; &P < 0.01
compared PC9 cells
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prognosis [31, 36–38, 40], FGL1 expression is downregu-
lated in HCC, and loss of FGL1 may lead to the low dif-
ferentiation of HCC cells [31, 36, 40]. This difference
may be closely related to the differentiation of tumor
cells [40] and their surrounding microenvironment [28,
38]. In the current study, we found that knockdown of
FGL1 led to clearly enhanced the expression of cleaved
caspase 3 and cleaved PARP1, and overcame acquired
resistance to gefitinib in NSCLC cells both in vitro and
in vivo. Similarly, some studies have shown that activa-
tion of STAT3/Bcl-2/caspase 3 signaling can promote
apoptosis of NSCLC cells [17, 43], and acquired resist-
ance of EGFR-mutated lung cancer to TKI treatment is
related to the anti-apoptosis effect of the PARP pathway
[44]. Our study unraveled that FGL1 may be involved in
the regulation of proliferation and apoptosis in NSCLC
cells via modulating the PARP1/caspase 3 pathway.
In addition, high FGL1 expression may be related to

the expression level of EGFR, which has been reported
in L02 cells and several studies on liver injury [19, 30,
45, 46]. FGL1 can inhibit L02 cell proliferation induced
by activating the non-receptor tyrosine kinase SRC to in-
duce EGFR phosphorylation [21]. It has also been ob-
served that apoptosis of NSCLC cells is induced by
inhibition of EGFR/STAT3 activation and promotion of
PARP1 cleavage, regardless of the mutation status of
EGFR [47]. Consistently, we also found that administra-
tion of gefitinib and loss of FGL1 suppressed phosphor-
ylation of EGFR (p-EGFR1173 and p-EGFR1086) and
promoted apoptosis by reducing the levels of caspase 3
and PARP1 in vitro. However, we used only one lung
adenocarcinoma cell line (PC9/GR) for in vitro and
in vivo experiments and mouse experiments were not
conducted. Therefore, the precise functions of FGL1 in
acquired resistance to EGFR-TKIs requires further study.
In summary, our results suggest that FGL1 may be an
important regulator of EGFR-TKI resistance in NSCLC
and targeting FGL1 may be a promising approach to
solving the problem of EGFR-TKI acquired resistance.
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