From: Artificial intelligence in COPD CT images: identification, staging, and quantitation
Year | Reference | Team | Dataset | Task | Main methods | Performance |
---|---|---|---|---|---|---|
2013 | [64] | Mets et al. | 1140 inspiratory and expiratory CT | COPD identification | - The segmentation of lung and airway | ACC=82.8%, SEN=88%, SPE=73.2%, PPV=80.2%, NPV=84.2% |
437 COPD | - Three quantitative CT biomarkers (emphysema, air trapping, and bronchial wall thickness) | |||||
 | - Logistic regression | |||||
2016 | [65] | Ying et al. | COPDGene | COPD GOLD classification (GOLD 2011) | - Fisher score method | ACC=97.2% |
- Deep belief network | ||||||
2017 | [66] | González et al. | COPDGene: 3881 COPD vs 4387 non-COPD, ECLIPSE: 1727 COPD | COPD identification and stage | - Four canonical views of the CT scan | Identification: |
- CNN with three convolutional layers | (COPDGene) ACC=77.3% AUC= 0.856 | |||||
 | (ECLIPSE) AUC=0.548 | |||||
 | Stage: | |||||
 | (COPDGene) ACC=51.1% | |||||
 | (ECLIPSE) ACC=29.4% | |||||
2017 | [67] | Cheplygina et al. | -Danish Lung Cancer Screening (DLCST) | COPD identification | - Gaussian texture features | DLCST: AUC=0.684 |
-Partial COPDGene | - Multiple instance learning | COPDGene: AUC=0.962 | ||||
 | - Transfer learning | Frederikshavn AUC=0.969 | ||||
2018 | [68] | Sathiya et al. | — | COPD identification | - Gray Level Co-occurrence Matrix | — |
- Fuzzy c-means clustering | ||||||
- CNN classifier | ||||||
2020 | [69] | Singla et al. | COPDGene | GOLD diagnosis and stage | - Discriminative network | Diagnosis: AUC=0.82 Recall=0.80 |
- Attention mechanism | Stage: ACC=65.44% | |||||
- Generative network | Â | |||||
2020 | [70] | Xu et al. | 190 COPD vs 90 non-COPD | COPD identification | - CT lung image | ACC=99.29%, AUC=0.9826, SEN=99.47% |
- The fourth convolutional layer for 9 feature extraction Principle component analysis MIL, Citation-KNN for classification | SPE=98.89% F1-score=0.9947 | |||||
2020 | [71] | Du et al. | 190 COPD vs 90 non-COPD | COPD identification | - Snapshots of different view of airway tree | ACC=88.6% |
- CNN with Bayesian optimization | ||||||
- Majority voting | ||||||
2020 | [72] | Tang et al. | 1304 COPD vs 1285 non-COPD (PanCAN) | COPD identification | - CT images | PanCAN: AUC=0.889 |
- ResNet 152 | ECLIPSE: AUC=0.886 | |||||
 | PPV=0.847, NPV=0.755 | |||||
2021 | [73] | Ho et al. | 204 COPD vs 392 non-COPD | COPD identification | - Parametric-response mapping of CT image | ACC=89.3%, SEN=88.3%, AUC=0.937 |
- 3D CNN | ||||||
2021 | [74] | Hasenstab et al. | COPDGene. | GOLD stage | - Co-registration | SEN=88.25%, SPE=74.5%, AUC=0.905 |
- Lung segmentation | ||||||
- Measurements of emphysema and air trapping | ||||||
- Logistic regression | ||||||
2022 | [75] | Chen et al. | 707 COPD vs 4116 non-COPD | COPD identification | - Graph convolutional MIL | AUC=0.96 |
- Adaptive additive margin loss | ||||||
2022 | [76] | Li et al | 249 patients with stable COPD and 73 controls | COPD identification and stage | - Radiomics | Identification: |
- Feature selection methods, including variance threshold, Select K Best method, and least absolute shrinkage and selection operator (LASSO) | ACC=0.941, SEN=0.940 | |||||
- Support vector machine (SVM) | SPE=0.955, AUC=0.970 | |||||
 | Stage: | |||||
 | ACC=0.759, SEN=0.723 | |||||
 | SPE=0.805, AUC=0.799 | |||||
2022 | [77] | Makimoto et al. | 602 COPD, 602 non-COPD | COPD identification | - Resampling, segmenting the lung and removing the airways | AUC=0.78 |
- Radiomics | ||||||
- Elastic Net (feature selection) | ||||||
- SVM | ||||||
2022 | [78] | Zhang et al. | 204 COPD vs 392 non-COPD | COPD identification | - Lung parenchyma and bronchial wall patch of CT lung images | ACC=81.7%, SEN=81.0% |
- DenseNet-201 | SPE=81.6%, AUC=0.899 | |||||
2022 | [37] | Wu et al. | 291 COPD vs 290 non-COPD | COPD identification | - Snapshots of different view of airway tree and lung field | ACC=94.7% |
- ResNet-26 | SEN=92.9% | |||||
- Majority voting | SPE=96.7% | |||||
2022 | [38] | Sun et al. | 749 non-COPD vs 644 COPD | COPD identification and stage | - CT images | Identification |
- ResNet18, attention MIL | SEN=80.5%, SPE=92.5%, AUC=0.934 | |||||
- Multi-channel 3D residual network | Stage: | |||||
 | SEN=76.5%, SPE=92.2%, AUC=0.912 | |||||
2022 | [79] | Li et al. | 204 COPD vs 392 non-COPD | COPD identification | - Segmented lung parenchyma of CT images | ACC=77%, Precision=0.80 |
- Graph convolutional network | F1-score=0.78, AUC=0.81 | |||||
2022 | [80] | Yang et al. | 468 subjects with Stage 0 to IV | COPD identification and stage | - Radiomics | ACC=0.80, Precision=0.943 |
- LASSO | F1-score=0.946, AUC=0.94 | |||||
- Multi-layer perceptron | Â | |||||
2022 | [81] | Yang et al. | 465 subjects with Stage 0 to IV (129, 108, 121, and 107) | COPD identification and stage | - Radiomics, 3D CNN features | ACC=0.943, Precision=0.943 |
- Auto-metric graph neural network | F1-score=0.946, AUC=0.984 | |||||
2023 | [32] | Wu et al. | 271 COPD vs 290 non-COPD | COPD identification | - CT images, Snapshots of different view of airway tree and lung field | ACC=95.8% |
- Attention MIL, LR | SEN=95.3% | |||||
 | SPE=96.5% | |||||
2023 | [82] | Almeida et al. | COPDGene and COSYCONET [83] | COPD identification | - Spatial alignment, Lung. Traches, and aorta segmentation (Pre-processing) | COPDGene: |
- Self-supervised learning | AUC=0.843 | |||||
- Generative Model | COSYCONET: | |||||
 | AUC=0.679 | |||||
2023 | [84] | Xue et al. | 363 COPD vs 437 non-COPD | COPD identification | - Transfer learning (pre-trained Resnet-50) | ACC=92%, SEN=92% |
- Pseudo-color method | SPE=91.95%, AUC=0.9544 | |||||
- Two stage attention MIL | Â | |||||
2023 | [85] | Zhou et al. | COPD (4,912), | COPD identification | - Multi-modal (Radiograph, chief complaint, and demographics and lab test results) | AUC=0.922 |
- Transformer-based representation and classification | ||||||
2023 | [86] | Puchakayala et al. | COPDGene | COPD identification | - Demographics features, emphysema and radiomics features of CT images | Standard-Dose CT Data: |
- CatBoost | PPV=0.86, NPV=0.83, AUC=0.90 | |||||
 | Low-Dose CT Data: | |||||
 | PPV=0.79, NPV=0.80, AUC=0.88 | |||||
2023 | [87] | Yu et al. | COPDGene | COPD stage | - Self-supervised Learning | ACC=0.65 |
- CNN |